1
AssessmentofFilamentousAlgaeintheGreenbrierRiver
andOtherWestVirginiaStreams
JamesSummers,WVDEPDWWM
December17,2008
Duringthesummerof2007,WVDEPreceivednumerouscomplaintsregardingtheamountof
algaeintheGreenbrierRiver.MostofthecomplaintscenteredontheCaldwelltoAldersonsectionof
theriver;andatleastonecomplaintwasreceivedaboutthelevelofalgaefurtherupstream
inthe
Denmararea.SeveralemployeesofWVDEPwerefamiliarwiththeproblemandindicatedthatthealgae
bloomhadbeenoccurringatvariousintensitiesfordecades;someassertedthatthealgaehadbeen
gettingworse,andperhapsstartingearlier,thanithadhistorically.
InSeptember2007,ameetingwithin
theWVDEPDivisionofWaterandWasteManagement
washeldtodiscusstheproblem.Results ofwaterqualitysamplesfromtheWatershedAssessment
Branchsampledatabase(WABBase)weresummarizedatthemeeting.TheWABBaseresultsshowed
elevatedlevelsofphosphorusinHowardCreek.HowardCreekflows intotheGreenbrier
Riverat
Caldwellwherethealgaeproblemwasreportedtobegin.WABBaseresultsalsoshowedthat
phosphoruslevelsinHowardCreekweresignificantlyhigherbelowtheWhiteSulphurSprings sewage
treatmentplant(WSSSTP)thanabovetheplant.
TheWSSSTPhadahistoryofsolids“washout”whichresulted
insludgebedsinHowardCreek.
SevengolfcoursesandafishhatcheryarelocatedonHowardCreek,upstreamoftheWSSSTP.
Additionally,significantcattlepasturingoccursintheGreenbrierbasinupstreamofHowardCreek,and
thegradientoftheriverlessenssomewhatnearCaldwell.Itwassuggestedthat
thesoilparticlesfrom
theupstreampasturesthatarehighinphosphorusweresettlingoutinthislowergradientsectionon
theriver,allowingsomeofthephosphorusboundtothesoiltobereleasedintothewatercolumn. 
Perhapsallthesefactorswerecombiningtofuela“perfectstorm”of
algae.Therewasnoconsensusin
theSeptembermeetingonwhattheprimarysourceofthealgaeproblemwas.
ATMDLeffortfortheGreenbrierriverbasinwasalreadyunderway.Allthefieldworkforthis
TMDLhadbeencompleted,makingavailablealargeamountofrecentwaterquality,biological,
and
pollutantsourcetrackingdata.Duringthe12monthsofmonitoringat130stations,theonlyviolationof
waterqualitystandardswasforfecalcoliformbacteria.Nutrientsamplesweretakenatseveral
locations;therewerenoviolationsliste dfornitrate,andcurrentlythereisnowaterqualitystandardfor
phosphorus
inWVstreams.Therefore,TMDLswerenotrequiredfornutrients.Pollutantsource
trackingeffortsfocusedonlyonthefecalcoliformimpairments,notonnutrientsources.Oneoutcome
oftheSeptembermeetingwastoperf ormadditionalsourcetrackingonHowardCreekandthe
GreenbrierRivertobetterquantifythenutrientsourcesthat
couldbecontributingtothealgaeproblem.
NutrientSourceTracking
Observationsofthelocationandintensityofthealgae,bothontheGreenbrierRiverand
HowardCreek,weremade;theaccumulationandimpactofsedimentwasevaluatedinthe“lower
gradient”sectionoftheGreenbrierRivernearCaldwell;historicalriver
flowandrainfalldatawas
assessed;areviewofWABBasenutrientdatawasmade;additionalsamplingincludedastormevent
samplingonHowardCreek,alowflow“snapshot”ofnutrientlevelsinHowardCreek,andawinter
samplingeventcoordinatedwithDEPEnvironmentalEnforcementinspectionstaffwhichincluded
concurrentstreamsamplingandComplianceSamplingInspectionsoftheWSSSTPandfishhatchery.
2
Photo1.GreenbrierRiveratHillsboro
STPdischargewherealgaebegins
(91208).
Photo3.GreenbrierRiveratmouthof
HowardCreek(92507).
Photo2.GreenbrierRiver200300feet
belowtheHillsboroSTP discharge
(101707).
3
Photo4.GreenbrierRiveratabove
FortSpring‐betweenRonceverteand
Alderson(82908).
Photo5A.Differentspeciesofalgae
growingincoldwaterofDavisSpring
(82508).
Photo5B.Vigorousperiphyton
growthonarocktakenfrom
TuscaroraCreeknearMartinsburg
(111108).
4
Photo6.SouthForkofSouthBranch
PotomacRiveratMoorefieldbridge
(81708).
Photo7.TygartValleyRivernear
Elkins,abovequarry(92508).
Photo8.CacaponRivernearYellow
Spring‐belowWardensville(92508).
5
Photo9.HydrillabedsonNewRiver
withsomefilamentousalgae
development.NearGladeCreek
campground(91708).
Photo10.Filamentousalgaealong
edgeofNewRiverjustaboveGauley
Bridge(91708).
Photo11.Hydrillabedsinthe
CaldwellpooloftheGreenbrierRiver
aboveHowardCreek(92507).
6
RiverFlowandRainfall

ArchivesfromtheUSGSgagingstationatAldersonandtheNationalWeatherServicewere
reviewed.Whilethesummerprecipi tationandriverflowhavebeenbelowaverageforthreeofthelast
fouryears,theriverflowwasnotexceptionallylow‐fromanhistoricalperspective
(seeAttachment4).
SedimentImpactandRootedAquaticVegetati on
SedimentaccumulatesintheGreenbrierRiverinthelong poolatCaldwell.Thisisoneofthe
fewplacesontheriverwherethetypicalrockysubstrateofGreenbrieriscompletelycoatedwith
sediment.Movingfromthetopofthepool
down,itwasnotedthatasthesedimentincreasedthe
amountofrootedaquaticvegetation(notalgae)increaseddramaticallyandeventuallycover edthe
entireriverbottom(Photo11).Thistypeofrootedvegetation,genusHydrilla,growsinlargebedsin
severalotherriverswheresedimentaccumulated,mostnotablytheNew
River.SeePhoto9.
Asarule,whereversedimentaccumulatedintheGreenbrierRiver,therootedvegetation
thrived.ThisnutrientrichsedimentmostlikelyresultsfromagriculturalactivitiesintheGreenbrier
watershed.NobiologicalimpairmentsoccurredintheGreenbrierbasinduringthepreTMDL
monitoring,indicatingthegradientishigh
enoughtomovethesedimentdownstreamwithonlyminimal
accumulationintheGreenbrier.
AlgaeDistribution
IntheupstreamsectionoftheGreenbrierRiverintheDenmararea,thereisaveryclearstarting
pointforthealgaeimmediatelybelowthesewagetreatmentplantdischargeforthetownof
Hillsboro
(Photo1and2).Hillsboro’sdischargeisabout20timessmallerthanthatfromWSSSTPorRonceverte
STP,sothealgaebloomisrelativelyshortlived.Itbeginswaningjustbeforethesewagedischargefrom
theDenmarCorrectionalCenterenterstheriver;therethealgaebloomincreasesand
continuesdown
theriver,againforonlyarelativelyshortdistance,untilitisgone.
FilamentousalgaedoesnotshowupsignificantlyintheCaldwellpooluntilHo wardCreek,which
drainstheWhiteSulphurSpringsarea,enterstheGreenbrierRiver.Atthispointfilamentousalgaeclogs
theHydrillabedsand
fillsthewatercolumn(Photo3).Thealgaegraduallydispersesacrosstheriver
overthenexthalfmileofriffles.OncetheriverreachesRoncevertethealgaeiswelldispersed.When
thedischargefromtheRoncevertesewagetreatmentplantenterstheriver,thealgaeagainfillsthe
watercolumnalongthe
sideoftheriverintowhichtheplanteffluentisdischarged.
BelowRoncevertethelevelofalgaldevelopmentcontinuestobesignificantthroughFortSpring
andAlderson(Photo4).AslighttemporaryincreaseisfoundbelowtheAldersonsewagetreatment
plantdischarge,butthealgaelevelisalreadyhigh
enoughthatthesmallerdischargefromAlderson
doesn’thavethedramaticincreasethatisseenbelowHowardCreek(WhiteSulphurSprings)and
Ronceverte.SignificantlevelsofalgaecontinuethroughPenceSpringsandbegintapering offbyTalcott.
Afewsporadicsmallalgaebloomswerenotedondowntherivertoits
mouth(Attachment1).
ThereisnoalgaebloombelowtheDurbinsewagetreatmentplantdischargetotheGreenbrier
River.AnalgaebloomwasnotedbelowMarlintoninmidsummer2008,butdisappearedbySeptember.
Thisisprobablyduetoavaryingcalciumlevelintheriveratthispoint.(The
criticalroleofcalciumwill
beexplainedlaterinthisreport.)
7
AwayfromtheGreenbriermainstem,theamountoffilamentousalgaefoundonHowardCreek
itselfwassurprisinglylowcomparedtotheGreenbrierRiver.Rootedaquaticvegetationdominatesthe
creekwheresedimentaccumulatesandperiphytonthrivesontherockysubstrateinotherplaces.Even
thoughtherewaslessfilamentous
algaethanoriginallyexpected(found latertobeduetothe
calcium/hardnesslevel)therewereareaswherefilamentousalgaeaccumulatedinHowardCreek,and
particularlyofnoteweretheareasupstreamoftheWSSSTPdischarge.Sevengolfcourses,atrout
hatchery,andsomeminimalpasturingarelocatedonHowardCreek
upstreamoftheWSSSTP.
SourceCharacterization
Fertilizerinformationwasgatheredfromsixofthesevengolfcourses.Nutrientcontent,
applicationratesanddates, soilandwatersampleresults,managementpractices,andother
informationwascompiledandevaluatedbyWVDEP.(Theseventhcourseisthefarthestupstreamand
located
onasectionofHowardCreekwherenofilamentousalgaewasnoted;fertilizerapplicationrates
fromtheothercourseswereusedtoestimatetheloadingfromthiscourse.)Researchconductedjointly
byOhioStateUniversityandtheUSDAstudiednutrientlossratesfromgolfcourses;thephosphorusloss
ratewas6.2%
ofthetotalapplied,or0.51kg/ha/year(Kingetal,2004).TheseUSDAvalueswereused
tocalculatethecombinedannualp hosphorusloadingcontributionfromthegolfcourses onHoward
Creek.Thecombinedphosphoruslossfromthegolfcoursestotaled200300lbs/year,orabout3%of
thetotalphosphorus
loadinginHowardCreekatitsmouth.
DuringthepreTMDLmoni toring,WVDEPhadtakenmonthlysamplesforoneyearonHoward
Creeknearitsmouth,justbelowtheWSSSTP,justabovetheWSSSTP,andupstreamofsixofthegolf
courses.Thisintensivesamplinghelpedtosegregate
theWSSSTPloadingfromothercategoriesof
sources(Figure1).Grabsamplesofthestreamtakenduringthelowflowconditionsofearlyfallof2007
andaseriesofstreamsamplestakenduringastormeventbothshowedsimilarresults(Attachment3).
Figure1.
PhosphorusLoadingatVariousLocationsAlongHowardCreek.Streamloadings(lbs/day)arebasedon
preTMDLsampleresultstakenMaythroughOctober2004.TheloadingfromtheWhiteSulphurSpringsSTPwas
calculatedfromeffluentsampleresults.
8
Figure2.PhosphorusLoading(lbs/day)DuringComplianceSamplingInspections.

ComplianceSamplingInspectionswereconductedconcurrentlyattheWSSSTPandthenational
fishhatchery;HowardCreekwassampledduringthesametimeasthecompositeeffluentsampleswere
takenfromthehatcheryandWSSSTTP.Again,theWSSSTPaccountedformostofthephosphorus
loadinginHoward
Creek(Figure2).Ge nerally,theWSSSTPaccountedfor8090%ofthetotal
phosphorusloadinginHowardCreekthroughouttheyear.
TheconclusiondrawnfromthenutrientsourcetrackingwasthatthealgaeintheGreenbrier
Riverresultsprimarilyfromthedissolvedphosphorusinmunicipalsewagetreatmentplanteffluent
combiningwithnitrogenfromahostofsources(agriculture,municipaldischarges,andfailingseptic
systems).
KeystoAlgaeDevelopment
Aftertheinitialpollutantsourcetrackingwasperformed,onequestionwasobviousandhadto
beanswered:Ifthealgaebloomisdriv enbysewagetreatmentdischarges,whyisthe
algaebloomso
severeonsomeportionsoftheGreenbrierRiverandnotpresentonmanyotherriversinthestate.A
queryofWABBase,whichcontainsover30,000samplesfromacrossthestate,turnedupaclear
differenceintwoimportantparametersalkalinityandhardness.Thesetwoparameters,
alongwith
pH,serveascontrollingvariablesandstronglyinfluencethebehaviorofotherconstituentspresentin
water(Weiner,pp53).
9
Bothalkalinityandhardnessareindirectmeasuresofmultipleconstituents,andareusually
expressedasanequivalentconcentrationofCaCO
3
.Hardnessisapropertyofcations(Ca
+2
andMg
+2
)
whilealkalinityisapropertyofanions(HCO
3
1
,CO
3
2
,PO
4
3
,andOH
1
).
ThresholdAlkalinity
Significantly,noalgaebloomswerenotedonstreamswherethealkalinitywaslessthan30mg/l.
Lowalkalinity(lessthan25mg/l)keepsphosphorusfrombeingavailableasanutrient(Wurts,1992)and
couldevenlimitalgaegrowthduetolowmineralizedcarbonlevels.Analkalinityof
greaterthan50mg/l
isrecommendedforproductiveaquacultureponds(Brunson,1999).InWestVirginia,lowalkalinity
riverswithmunicipalsewagetreatmentplantdischargesincludetheElkRiver,CherryRiver,Little
KanawhaRiver,andtheupperGreenbrierRiver(Durbinarea).Algaebloomshavenotbeendocumented
ontheserivers.

Hardness
Ceiling
Further,nosignificantalgaebloomswerepresentonseveralotherriverseventhoughample
phosphorus,nitrogen,andalkalinitywerepresent.WhenreviewingtheWABBasedata,itwasnoted
thatthehardnesslevelonthesestreamstendedhigherthanontheGreenbrierRiver(seeTable4,p14).
Hardness
ontheGreenbrierdidnotexceed100mg/l.ThehardnessontheWestForkRiverbelowthe
WestonSTPdischargewas250400mg/l.SincehardnessisameasureofCa
+2
andMg
+2
cations
(sometimesironandaluminumcanmildlyinfluence totalhardness),aliteraturesearchwasconducted
todetermineiftherewasanyresearchontheroleofcalciumandmagnesiuminthedevelopmentof
algaeinnutrientrichwaters.Thereisa bodyofresearchonthetopic,anditconcludesthat
calciumand
magnesiumarekeyfactorsinalgaedevelopment.DetailsaregivenintheLiteratureReview.”
Nutrients
AstoichiometricformulaforalgaehasbeenestimatedasC
106
H
181
O
45
N
16
P(Craggs,2005).One
poundofphosphorouscanthenproducearound78poundsofalgae.(Somesourceshave reportedthis
as350pounds,butthisisincorrectly basedonthemolarratiosinalgae,notthemassratios).Nitrogen
andphosphorusareincorporatedintothealgaecellstructureatapproximatelya
16:1nitrogento
phosphorusmolarratio(Redfield,1958). But becausenitratesleachfromthesoilmorereadilythan
phosphorus,nitrogenisgenerallymuchmoreavailablethanphosphoroustoaquaticvegetati on. 
Consequently,algaegrowthinmostsurfacewaterswillbelimitedbyphosphorous(Weinerpp98).
Removingphosphorusis,chemically,themost
efficientwaytolimitalgaegrowth (Kennedy,2004).
Underidealsummergrowingconditions,algaebloomscanoccurwithinorganicphosphorus
concentrationsaslowas0.0050.01mg/l(Weiner,pp101;Kawaga,1989).Weineralsonotesthat
whenphosphorouslevelsincreaseandcausealgaegrowthtobelimitedbyeither
carbonornitrogen,
longtermmechanisms(CO
2
diffusionfromatmosphereandchangesinbiological growthmechanisms)
acttocompensateforthesedeficienciesandalgalgrowth oncemorebecomesproportionaltothe
phosphorousconcentration(Weiner,pp100).
IntheGreenbrierRiver,algaebloomswereoccurringwithPconcentrationsaslowas0.01.014
mg/l.Theamountofalgae
formationincreasedwithanincreaseinPconcentrationsfoundbelowthe
dischargesofthesewagetreatmentplants.(Seegrap hin Attachment1.)
10
Thisisnottosaythatphosphorusismoreimportantthannitrogeninthegrowthofalgae,only
thatgrowthtendstobelimitedbyphosphorus inmostcases.Nitratesareverysolubleandcomefroma
numberofsourcesincludingpasturing,cropandlawnfertilizers,failingseptic
systems,andtreated
sewagedischarges.Consequently,nitratesareratherubiquitousinriversystems.IntheGreenbrier
River,summernitratenitriteconcentrationsrunabouthalftheirwinterlevel,despitethemuchhigher
wintertimeriverflowwhichdilutesthephosphorusconcentration.ThesummerN:Pmassratiointhe
GreenbrierRiveraboveHoward
Creekisabout23:1.Thereisessentiallyenoughnitrateloadinginthe
GreenbrieratRonceverte,220lbs/day,tofuelthealgaegrowthforthecombinedphosphorus loading
frombothWSSSTPandRonceverteSTP,eveniftheentirenitrateloadfromthesesewagetreatment
plantdischargeswasremoved.Phosphorusseems
tobethekeytonotonlyunderstandingthealgae
problem,buttoalleviatingitaswell.
OtherFactors(Turbidity&Temperature)
Severalotherstreamshadachemistry(alkalinity, hardness,phosphorus,andnitrogen
concentrations)thatseemedfavorableforalgaedevelopment,butnoalgae bloomhadbeenreported.
Whentheserivers
werevisited,manyhadsignificantalgaedevelopment.Thesestreamsinclude
portionsoftheCacaponRiver,BluestoneRiver,NewRiver,andTy gartValleyRiver.TheNorthForkof
theHughesRiverhadsomelowtomoderatealgaedevelopment,butwassomewhatsuppressedgiven
itschemistry;however,waterturbiditywasclearlya
factorinlimitingthealgaedevelopmentonthe
NorthForkofHughes.Otherstreamswithfavorablechemistrywhichdidnothavesignificantlevelsof
filamentousalgaehadobviouslimitingfactorsforalgalgrowth,mostoftenturbidity(KanawhaRiverand
BrushForkofBluestone)ortemperature(PineyCreek).
Giventheseobservations,
itseemslikelythatalkalinityandhardness,alongwiththeknown
factorsofnitrogen,phosphorus,andturbidity,playakeyroleinfilamentousalgaedevelopmentinWest
Virginia’sstreams.Itisreasonedthataminimumalkalinityisnee dedtomakethephosphorous
availableforplantuptake,andthatathigher
hardnesslevelsCa/Mgprecipitationwithphosphorous
occurs,makingthephosphorusmuchlessavailableforalgaedevelopment.
LiteratureReview
Understandingtherelationshipbetweenalgaeandphosphorusiscomplicatedbythefactthat
analgaecell’sabilitytousespecificformsofphosphorusisstronglyinfluencedbyseveralfactors,
includingpH,hardness,theamountofdissolvedoxygen,andtemperature(Florida,2000).Other
environmentalfactorssuchasshading,grazing,turbidity,
andsubstrateconditioncanmaintainlowalgal
biomassdespiteabundantnutrients(DoddsandWelch,2000).Further,algaeinstreamsandrivers
occurinmultipleforms,suchassestoniccellswhicharesuspendinthewatercolumn,periphytonwhich
growsonthesubstrate,andfilamentousmats;thesevariousformsmaydiffer
intheirresponseto
nutrientenrichmentandthedegreetowhichtheyareaffectedbyotherenvironmentalfactors(Royer,
2008).
 Theenvironmentalbehaviorofphosphorousislargelygovernedbythege nerallylowsolubility
ofmostofitsinorganiccompounds,anditsstrongadsorptiontosoilparticles(Weiner,pp97).Einsele
andMortimerdemonstratedinthelate1930sandearly1940sthatsedimentsretainphosphorousby
fixationtoiron.Theseresults createdawidespreadopinionthatphosphoroussedimentologywas
completelylinkedtoironchemistry,althoughitwasknownthatcalcareoussedimentsbehaved
differently(Bostrometal,1988).Ithasbecomeevi dent
inmorerecentresearchthatphosphorus
11
exchangebetweensedimentandwaterisahighlycomplexphenomenonandincludesmanyinterrelated
chemical,biological,andphysicalprocesses(Bostrometal,1988).
Orthophosphate,themineralizedformofphosphoruswhichisusedbythealgae,associates
withparticlesbyseveraltypesofbonding,fromphysicaladsorption,to
coprecipitation,tochemical
bondsofdifferentstrengths(complex,covalent,andionicbonds)(Bostrometal,1988).
Supersaturationand/orundersaturationofphosphatesaltsmayalsooccur,furthercomplicatingthe
studyofthechemicalprocesseswhichgovernphosphorusavailability(Diaz,1994).
Theroleofcalciuminphos phoruswaterchemistryhas
receivedfarlessattentionthaniron
phosphorusinteractions(Bostrometal,1988).However,severalresearchershaveinvestigatedthe
connectionofcalciumtophosphorusuptakeinalgae.Magnesiumions, withthesameplustwocharge
ascalcium,behavesimilarlytocalciumandaresometimesconsideredtogetherwithcalciumintheir
combinedimpact
onalgaegrowth.
BedoreetalfoundthatintheupperIllinoisRiver,pHcombinedwithCaandMgactivityarethe
dominantchemicalcontrolsonphosphoruschemistry(2008).Vasatareportedthattheoptimal
concentrationsofCaandMgfortheproductivityofalgaedecreasedwithincreasingPconcentration,
and
KawagaetalfoundaregulatingeffectofdissolvedCaandMgonthePnutritionofalgae,i.e.their
CaMgindexcouldpredictboththeamountofsuspendedphytoplanktonandtheamountofphosphorus
containedinthesestonicalgae(1989).MasayoshifoundaCa/Mgratiolessthan4
hadanegativeeffect
onalgalgrowth,andaCa/Mgratiogreaterthan5enhancedgrowth(2000).
Theeffectofcalciumandmagnesiumonphosphorusprecipitationisvariabledepending
onthechemicalandphysicalconditionsofthewatersystem.Bedorefoundhighlyvariableassociations
ofphosphorusinsedimentinstreams
impactedbymunicipalsewagetreatmentplanteffluents.Infive
differentsamplelocations,2070%ofPwasFeassociated,2050%ofPwasboundinorganic
compounds,and535%ofPwasassociatedwithcalciumminerals(2008).Bedorealsonotedthat
naturallyhardwaterstreamsandriversregularly
experiencehighionicstrength,greatlycomplicatingin
streamchemistry.Plantetal(2002)establishedthatphosphoruscoprecipitateswithcalciteinhighly
alkalineaquaticenvironments,althoughthismaybeinhibitedasdissolvedpho sphoruslevelsapproach
0.6mg/lduetothecessationofcalcitegrowth.Otherreportshavealsosuggestedthatphosphorus
co
precipitatesoncalciteinhardwaterrivers(Avimelech1980;Salinger1993).HartleysuggestedthatCaP
precipitationisanaturalmechanism tocontroleutrophicationinhardwaterlakes(1997).LongtermP
accumulationintheEvergladeswaslinearlycorrelatedwithCa
+2
accumulation(Reddyetal1993).
Thatcalciumandmagnesiumconcentrationsarestronglylinkedwithalgaegrowthiswell
establishedbyresearchandobservation.Generally,theCaMgionsacttocont rol theavailabilityof
phosphorusforalgaeuptakebythefor mationofrelativelyinsolublephosphateprecipitates.The
specificsofthe
phosphateprecipitationarecomplexandcanvarywiththeindividualchemistryofeach
riversystem.AlthoughthecomplexitiesofthemechanismsofCaPprecipitationisnotfullyunderstood,
theconsensusisthatthechemistryoftheaqueousphasefromwhichprecipitationtakesplaceisof
paramountimportance(Koutsoukos,2000).
PhosphatePrecipitation
Phosphorusbasedanionsoccurinseveralformsandaremostoftenassociatedwithcalcium,
magnesium,sodium,iron,andaluminumcations.Allofthecompoundshavedifferentsolubilities,most
12
ofwhichvarysignificantlywithpH,and formationofsomePcompoundswillalwaysbefavoredover
othersdependingonthegeneralchemicalenvironment(alkalinity,hardness,conductivity,pH,redox
potential,ironavailability,etc.)inwhichformationoccurs.Table1showsthenegativelogofthe
solubilityproductconstants(K
sp
)forseveralsimplephosphatecompounds;whileall(exceptsodium)
arefairlyinsoluble,calciumphosphateisthemostinsolubleand iscloselyfollowedbymagnesium
phosphate.
Table1.SolubilityofSelectedPhosphateSalts

Table2.SolubilityofCalciumPhosphateMinerals:FromOctacalciumPhosphate(Chow,2001)
Compound Abbreviation Formula‐log
(Ksp)@25
o
C
Monocalciumphosphatemonohydrate MCPM Ca(H
2
PO4)
2
.
H
2
0
Highlysoluble
Monocalciumphosphateanhydrous MCPA Ca(H
2
PO4)
2
Highlysoluble
Dicalciumphosphateanhydrous DCPA CaHPO4
6.9
Dicalciumphosphatedihydrate DCPD CaHPO4
.
2H
2
0
6.6
CalcitewithcoprecipitatedP CCP CaCO
3
.
PO
4
8.47
alphaTricalciumphosphate
αTCP
Ca
3
(PO4)
2
25.5
betaTricalciumphosphate
βTCP
Ca
3
(PO4)
2
28.9
TetraCalciumphosphate TTCP Ca
4
(PO4)
2
O
38
OctacalciumPhosphate OCP Ca
8
H
2
(PO4)
6
.
5H
2
0
46.9
Hydroxyapatite HAP Ca
5
OH(PO4)
3
58.3
Fluorapatite FAP Ca
5
F(PO4)
3
60.5
TheCaPfamilyofcompoundsmaytakeonseveraldifferentchemicalforms(Table2).
Solubilityproductconstantsareexperimentallydetermined,andthereissomedisagreementinscientific
researchandpublicationoverthereportedKspvaluesforsomeoftheCaPcompounds.Perhapsthe
mostimportantcausefor
inconsistentreportingisthemetastabilityofsomeCaPsaltsinrelationto
othermorestableforms(Morenoetal,1966).(Metastablesaltsformanapparentequilibriumin
solution,butchangequicklytoamorestableformwithonlyaslightchangeofconditions.Thisfurther
complicatestheunderstandingof
thespecificchemicalmechanismsofCaPprecipitation.)Thereis,
however,agenerallyacceptedorderofrelativesolubility.
MCP >> DCP > TTCP > α-TCP > β-TCP >> OCP>HAP
RoleofMagnesium
Hydroxyapatite(HAP)canaccountforupto80%ofphosphateprecipitation,buttheformation
ofHAPcanbeinhibitedbythepresenceofmagnesiumions(Cragg,2005).InhibitionofHAPformation
resultsintheformationofotherCaPprecipitates,mainlyOCPandTCP(Diaz,1994).Mg
Pprecipitates
canalsobeproduced.Magnesiumformssimilarchemicalcompositionsascalciumwiththephosphate
CompoundFormula ‐log(Ksp)@25
o
C
AluminiumphosphateAlPO
4
20
CalciumphosphateCa
3
(PO
4
)
2
27
Iron(III)phosphatedihydrate
FePO
4
.
2H
2
O
15
MagnesiumphosphateMg
3
(PO
4
)
2
24
SodiumPhosphateNa
3
PO
4
Highlysoluble
13
ion:magnesiumphosphatemonobasic(Mg(H
2
PO
4
)
2
),dibasic(MgHPO
4
),andtribasic(Mg
3
(PO
4
)
2
).The
solubilityofmagnesiumsaltsisgenerallyonlyslightly higherthanthatofcalciumsalts.Allthese
compoundshavelowsolubilityproducts.
DiazfoundtheCaPequilibriumofstreamwaterwithvarioushardnesslevelscouldbe
controlledbyOCP,βTCP,HAP,orpossiblyaCaMgFe
Pcomplex.WhichCaPmineralcontro lledthe
equilibriumdependedonpHandCaMgconcentrations.Itwassuggestedhighermagnesium
concentrationsinharderwatermayberesponsiblefortheformationoftheselesssolubleCaPforms
wheneverdolomite(notcalcite)isthethermodynamicallydominantphaseofcarbonate.Ithas
been
reportedthataMg
+2
/Ca
+2
ratiogreaterthan0.6indicatesthatdolomiteisthethermodynamicallystable
phase,andcalcitethedominantphaseofwaterswhereratiosarelessthan0.6(Hsu,1963).
LiteratureSummary
1. Phosphorusiscommonlythelimitingfactorforalgaegrowth.
2. CaandMgplayakeyroleincontrollinginstream
phosphoruschemistrybyformingnumerous
phosphateprecipitates.
3. Whenphosphorousisinsolidform,itisunavailableforalgaetouse.
4. Dolomiticstreamsarehigherinmagnesiumcontent,andinsolubleMgPprecipitatescanformin
thesewaters.
5. CaMgPchemistryisverycomplex,andprecipitateformation
isdependentonstreamspecific
chemistry.
ApplicationinWestVirginia
MoststreamsinWestVirginiacaneasilybeclassifiedasbeingdominatedbyeitherthecalciteor
dolomitebydeterminingtheMg
+2
/Ca
+2
ratioduringlowflowsummerconditions.Dolomitic streams
includetheTugFork,Coal,Guyandotte,andMudrivers.SteamsnearequilibriumincludethelowerElk,
Birch,upperKanawha,lowerGauley,Shenandoah,andNewrivers.Stronglycalcitestreamsincludethe
Greenbrier,upperGauley,upperElk,LittleKanawha,Hughes,WestFork,Tygart,Cheat,
Monongahela,
SouthBranchPotomac,andCacaponrivers.Theselistsshowthatstreamsfromthesouthern coalfields
regionofthestatearedolomiticstreams.Magnesiumisexpectedtoplayadominantroleinthe
phosphoruschemistryinthesestreams.
TheCaMgIndexproposed byKawagawasbasedondatafor
sestonicalgaeinlakes,butitalso
yieldsinterestingresultswhenappliedtoWestVirginiarivers.Theirindexisproposedasthe
log[Ca
+2
/Mg
+2
]‐0.5log[Ca
+2
+Mg
+2
],
whereCaandMgareexpressedinmolarconcentrations,notmg/l.
Table3rankstheCaMgIndexforseveralWVrivers;thoseriverswithalkalinitybelowthe
thresholdvalueforalgaedevelopment(average30mg/l)arenotshowninthetable.Thetableshows
anexcellentcorrelation
betweentheCaMgIndexandthelevelofalgaedevelopment.Itmustbenoted
thattheonlyfactorremovedfromconsiderationhereislowalkalinity;otherfactors,suchasnutrient
contentandturbidity,alsoimpactalgaedevelopmentandlargelyexplainvariationsinthelevelofalgae
developmentinTable3
.
14
Table3.CaMgIndexforWestVirginiaRivers
River CaMg
Index
Algae
Development
GreenbrierRiver 2.15 Severe
TygartValleyRiver 2.10 High
SouthBranchPotomacRiver 2.08 LowModerate
NorthForkHughesRiver 2.05 Low
SouthFork/SouthBranchPotomacRiver 2.01 Moderate
CacaponRiver 1.92 High
BluestoneRiver 1.81 ModerateHigh
WestForkRiver 1.80 None
MonongahelaRiver 1.77 None
NewRiver 1.74 Moderate
NorthBranchPotomacRiver 1.71 None
KanawhaRiver 1.68 None
GuyandotteRiver 1.65 None
ShenandoahRiver 1.54 None
TugFork 1.50 None
BirchRiver 1.50 None
CoalRiver 1.25 None
Table4.ModifiedCaMgIndexforWestVirginiaRivers
River Modified
CaMgIndex
Avg.Hardness
(mg/l)
Algae
Development
GreenbrierRiver 3.26 65 Severe
NorthForkHughesRiver 3.24 63 Low
T
TygartValleyRiver 3.18 70 High
NewRiver 3.1 79 Moderate
D
KanawhaRiver 3.08 85 None
T
CacaponRiver 3.10 96 High
SouthFork/SouthBranchPotomacRiver 2.95 112 Moderate
BluestoneRiver 2.94 121 ModerateHigh
SouthBranchPotomacRiver 2.88 130 LowModerate
GuyandotteRiver 2.86 145 None
WestForkRiver 2.85 190 None
MonongahelaRiver 2.84 149 None
TugFork 2.79 178 None
NorthBranchPotomacRiver 2.78 214 None
ShenandoahRiver 2.76 174 None
BirchRiver 2.74 221 None
CoalRiver 2.51 284 None
MudRiver 2.49 373 None
T=Algaelevelreducedbyturbidity.D=Algaelevelprobablyreducedbydepthofpools inriver.
15
ForthesampleresultsfromWABBaseusedtocalculatetheCaMgIndex,thefirsthalfofthe
equation(log[Ca
+2
/Mg
+2
])accountedforanaverageof10.2%ofthetotalIndexscore.Thelargest
percentageimpactwasonstreamswiththelowestoverallCaMgconcentrations,i.e.theGreenbrier
andTygartwhereitaccountedfor1520%oftheIndexscore.AModifiedIndex,‐log[Ca
+2
+Mg
+2
],was
calculatedandshowninTable4.Theresultsshowasimilarrankingoftherivers,andagood(perhaps
evenbetter)correlationbetweenthemodifiedindexandtheamountoffilamentousalgae
development.
ThisModifiedIndexisasimplefunctionoftheCa
+2
andMg
+2
molarconcentrations;sois
hardness.ItseemshardnesscouldindeedbeusedasabasicindicatorofaWestVirginiastream’s
propensitytogrowfilamentousalgae.Ahardnessleveloflessthan100mg/lappearsidealforalgae
development.Suppressionofalgalgrowthseemstooccuraround120150mg/l.
Andverylittle
filamentousalgalgrowthisseenwhenthehardnesslevelisabove150mg/l(exceptinAMDimpacted
streamswherethelowpHdrivesPavailabilitymorethanCaandMgdo).Inter estingly,thisisasimilar
rangetothehardnessscaleusedforpredictingsoapperformance,mineral
deposits,andmetalstoxicity.
Table5.HardnessScale(Weiner,pp77)

Hardnesswasoriginallyusedasameasureoftheabilityofwatertoprecipitatesoapand
interferewithlathering.Theinterferenceoccursasaresultofcalciumionreplacingsodiumionsinthe
soapmolecules;the
sodiumcarboxylates(likesodiumphosphates)areverysoluble,butthecalcium
carboxylates(likecalciumandmagnesiumphosphates)arerelativelyinsolublewhentheyform.This
interfereswiththesurfacetensioncreatedbythesoap,reducingthelather.Itisnoteworthythatthe
negativelogofKspvaluesforthecalciumcarboxylates used
insoaprangefrom719(Bulatovic2007);
thisisasimilar,butslightlylower,rangetotheKspvaluesoftheexpectedandobservedCa/MgP
precipitateswhichoccurinhardwaterindicatingthattheCa/MgPprecipitateswouldbegintoform
atsomewhatlowerconcentrations.Thisis
exactlywhatobservationsofalgaedevelopmentindicate.
Thisconceptalsolinesupwell withDiazetal,whofoundthatphosphorussolubilityatcalcium
concentrationslessthan50mg/l(equatingto125mg/lhardness)wasnotaffectedbypHintherangeof
pH69.Butwheretherewas
highcalciumlevels(>100mg/l)appreciableamountsofphosphate
precipitatedasthepHwas raisedfrom6to9.Diaz pointsoutthatotherresearchershavefoundthatP
precipitationisminimal atCaconcentrations<50mg/landwaterpH<8.0(Fergusonetal1970,1973;
Jenkinsetal,1971;Otsuki
andWetzel,1972;andFeenstraanddeBryun,1979).Fergusonetalreported
DegreesofHardness mgCaCO3/L Effects
Soft <75 Noscaledesposits
Efficientuseofsoap
Increasedissolutionofmetals.toxicity
ModeratelyHard 75120 Above100mg/l,significantscaledepositsmayform
Requiresmoresoapforcleaning
Notobjectionableformostpurposes
Hard 120200 Scalebuildupandstaining
occurs
Needssoftenedat~180mg/l
VeryHard >200 Requiressofteningforhouseholdand
 commercialuse
16
thataCaconcentrationof80mg/landawaterpH>8,wereneededtoprecipitate80%ofthePin
municipalwastewater(19 70,1973).AndStrangandWareham(2006)reportedsignificantPremoval
throughHAPprecipitationinasewagestabilizationpondwithahardnessof190mg/land
Caof60mg/l.
Basedontheobservations,evidence,andresearchitseemsthatasoundexplanationforthe
lackofalgaeinthemanyWestVirginiastreamswithnaturallyhardwateristheprecipitationofcalcium
and/ormagnesiumphosphates,whichmakesthephosphateunavailableinthewatercolumnfor
uptake
byfilamentousalgae.Thisisespeciallytrueofthedolomiticstreamsinthesoutherncoalfields.
OtherFactors
Turbidity/Substrate
Lowergradientstreamswithsedimentladensubstrateconsistentlyhavehigherlevelsof
turbidity,evenduringperiodsoflowflow,duetorecurringsuspensionoffinesediments(Royer,2008).
Suchstreams
donotsupportalgaegrowthsincelightpenetrationisdrastically reducedbytheturbidity.
Cladophora,whichisthedominanttypeoffilamentousalgaeintheproblematicareasinWestVirginia,
generallybeginsitsgrowth attachedtoarockysubstrateorotherhardsurface(Harris,2005).Partsof
theNorthFork
ofHughesRiver,LittleKanawhaRiver,KanawhaRiver,BrushCreek,DunkardCreek,and
otherswouldfallintothiscategoryofstreamswithaturbidwatercolumnandsiltysubstrate.
SecchitubereadingsfromtheHughesRivershowvariationofthewaterclarityatdifferent
pointsalongthestream.Clarityvaried
withbottomconditionsintheriver,andshowednolongitudinal
pattern.Onethingwasclear,thoughfilamentousalgaegrewintheleastturbidareasoftheriver.
Table6.RoleofTurbidityinAlgaeDevelopmentWestVirginiaRivers
River Location SecchiTubeDepth AlgaeDevelopment
NorthForkofHughes NorthBend 114 High
NorthForkofHughes Cairo 84 Low
NorthForkofHughes BelowCairo 76 None
NorthForkofHughes NearMouth 104 Low
SouthForkHughes Smithville 103 None
LittleKanawha GilmerStation 114 None
LittleKanawha BelowGlenville 96 None
Kanawha Charleston 108(verygoodday) None
Elk Gassaway&MinkShoals >120 None
SouthBranchPotomac OldFields >120 Lowmoderate
TygartValleyRiver AboveNorton >120 High
Greenbrier Ronceverte >>120 High
Temperature
ThetemperaturerangeforCladophoragrowthisbetween1525
o
C(Harris,2005).Nosignificant
amountsoffilamentousalgaewerefoundgrowinginanycoldwaterstreams(maximumtemperatureof
20
o
C)inWestVirginia,althoughanotherspeciesoffilamentousalgaewasgrowingintheDavisSpring(at
FortSpring)andTroutRun(nearFranklin).Itwasnotedthatastheaveragetemperatureofthe
GreenbrierRiveratAldersonslippedbelow20
o
Cthisfall,algaebegandying,andthediurnalpHandDO
swingslessenedevenastheflowintherivercontinuedtodecrease.SeegraphsinAttachment2.
17
Table7.AverageSummerTemperatureforSelectedStreams

Temperatureand/orshadearesuspectedtobethekeysuppressionfactorsinPineyCreek,anda
secondaryfactorinupperIndianCreekofNewRiverandSecondCreekofGreenbrierRiver.(Hardness
wasstilltheprimaryfactorinIndianand
Secondscreeks.)
NonfilamentousAlgae
Otherformsofalgaemaythriveinthenutrientrichwatersofstreamswhichhavesuppressed
filamentousalgaedevelopment.TuscaroraCreek,forexample,isatributaryofOpequonCreekand
receivesflowfromtheMartinsburgSTP.TheaveragehardnessofTuscaroraCreekisover300
mg/l.
Withnofilamentousalgaedevelopment inthisstream,itisexpectedthatthephosphateisprecipi tating
outofthewaterontothebottom.Excessiveperiphytondevelopmentnotedontherockysubstrateof
TuscaroraCreek(seePhoto5B)seemstosupportofthisconclusion.Similarcolonieswerenotedinthe
mainstemofOpequonCreekandlessvigorousdevelopmentwasobservedintheCoalRiver.The
interfaceoftherock,phosphatesalts,andwaterwouldprovidethemostlikelysiteforphosphorus
release/exchangeduringequilibriumshifts.Theperiphytondevelopmenthasnotresultedinpublic
outcry,andwasnotpartofthescope
ofthisinvestigationoffilamentousalgaedevelopment.No
judgmentisbeingmadeinthisreportastowhethertheperiphytoncoloniesconstituteorcontributeto
anywaterqualityproblem.
MeasuringFilamentousAlgae
Schaller(2004)andMorgan(2006)employedsimilarmethodsformeasuringfilamentousalgae
instreamsduringtheirresearch.
Atagivenstreamtransect,atapeisstretchedacrossthestream;
wettedwidthandportionsofthestreamcoveredbyalgaearerecorded.Atonelocationalongthe
transectwherethebottomiscompletelycovered,allalgaeandplantmaterialiscollectedina314cm
2
area.Thematerialcollectedisrinsed,dried,and weighedinalaboratory,andthenexpressedasmass
perunitarea.Theseresearchersusedthatvaluetoestimatemeanbiomassforthestreamreach.
ThismethodwasusedasabasisforalgaemeasurementinWestVirginiainthefall2008.

MeasurementsweremadeonseverallocationsontheGreenbrierRiver,theNorthForkofHughesRiver,
andatonelocationontheSouthBranchofPotomacRiver.Themeasurementsweredoneasatrialto
determinethefeasibility ofthemethod;nolabworkwasdonedetermineadryweight.
Anadditional
measurementwasmadeofthealgaedepthacrossthetransect,sothatamountofwatercolumnimpact,
notjuststreambottom,couldbecalculated.ResultsaresummarizedinTa ble8andshowngraphically
inAttachment1.
Stream AverageTemperature(
o
C)
(May–October)
MaximumTemperature(
o
C)
PineyCreek(mp0) 18.6 21.2
IndianCreek(mp26.2) 18.6 20.1
SecondCreek(mp0) 18.5 23.3
KnappsCreek(mp0) 18.3 21.6
OpequonCreek(mp0) 18.0 21.9
DavisSpring 13.4 14.3
GreenbrierRiver 21.4 26.7
18
Table8.AlgaeaccumulationatSelectedSites.
RiverandLocation BottomCover(%) WaterColumnFill(%)
SouthBranch@OldFields 53 3.7
NorthForkHughesatNorthBend 54 60
NorthForkHughesatCairo 23 4
GreenbrierHillsboro1 40 18
GreenbrierHillsboro2 53 28
Greenbrier‐Caldwell 53 32
Greenbrier–CoffmanHillRd. 80 27
Greenbrier‐nearRt62bridge1 41 16
Greenbrier‐nearRt62bridge2 85 7
GreenbrierRonceverte 74 50
Greenbrier‐USAlderson 64 23
Greenbrier‐1milebelowAlderson 39 10
GreenbrierLowell 46 9
WVDEPwillcontinueworkinthesummerof2009todevelopameasurementindexwhichmight
beusefultodefineanacceptablelevelofalgaldevelopmentthatstillmaintainsunhindered recreational
usesofthestream,includingfishing,swimming,andaestheticenjoyment.
SummaryofConclusions
1. Dissolvedphosphorusdischargedfrom
sewagetreatmentfacilitiesalongtheGreenbrierRiveris
abletocombinewithnitratesintheriverfromavarietyofsourcesandcauseobjectionable
algaeblooms.
2. Similar,butlesssevere,bloomsarealsooccurringontheBluestone,New,Cacapon,Tygart
Valley,SouthForkoftheSouthBranchofthePotomac,
andNorthForkofHughesRiver.
3. Lackofalkalinitykeepsthealgaebloomsfromoccurringonseveralrivers:Elk,Cherry,Little
Kanawha,andupperGreenbrier.Aminimumalkalinityof3040mg/lisneededforfilamentous
algaebloomstooccur.
4. Hardness,intheformofcalciumandmagnesium,
preventsalgaebloomsfromoccurringon
severalotherrivers:WestFork,Tug,Shenandoah,Guyandotte,Mud,andCoalRivers.The
mechanismforsuppressingthealgaeistheprecipitationofCaPandMgPsaltswhichmakes
thephosphorusunavailableforuptakebythefilamentousalgae.
5. Hardnesslevelsexceeding150mg/l
appeartoinhibitalgaegrowth.Somesuppressionof
growthmaybeginoccurringwhenhardnessexceeds100mg/l.TheSouthBranchofPotomac
Riverappearstohavesuppressedfilamentousalgaedevelopment.
6. Hardwaterriverswithelevatedphosphorustendtohaveenhanced periphytondevelopmenton
thesubstrate,probablyduetoits
abilitytoutilizeprecipitatedphosphorusatthesubstrate
interface.
7. Algaebloomsonsomerivers,includingtheKanawhaRiver,areinhibitedbyturbidity.
8. EnhancedphosphorusremovalatsewagetreatmentfacilitiesalongtheGreenbrierRivershould
substantiallyreducethealgaebloomoccurringinthatriver.
19
References
Bedore,PaulD.,MarkB.David(2008)Mechanismsofphosphoru scontrolinurbanstreamsr eceiving
sewageeffluent.Water Air Soil Pollut.191:217229.
Bostrom,B.,JAndersen,SFleischer,andM.Jansson(1988)Exchangeofphosphorusacrossthe
sedimentwaterinterface.Hydrobolgia170:229244.
Brunson,MartinW.,NathanStone,
andJohnHargreaves(1999)FertilizationofFishPonds.Southern
RegionalAquacultureCenter,PublicationNo.471.
Bulatovic,S.(2007)Handbook of Floatation Reagents.ElsevierPublishers,Amsterdam,pp139.
Chow,L.C.,andE.D.Eanes(2001)Octacalcium Phosphate.KargerPublishers,Basel,Switzerland,pp98.
Craggs,R.(2005)Pond Treatment Technology.IWA,London,pp8186.
Dodds,Walter
K.,ValH.Smith,andKirkLohman(2002)Nitrogenandphosphorusrelationshipsto
benthicalgalbiomassintemperatestreams.Can. J. Fish. Aquat. Sci.59:865874
Dodds,WalterK.andEugeneB.Welch(2000)Establishingnutrientcriteriainstreams.J. N. Am.
Benthol. Soc.19(1):186196.
Diaz,O.A.,K.R.ReddyandP.A.MooreJr.(1994)Solubilityof inorganic
phosphorusinstreamwateras
influencedbypHandcalci umconcentration.Wat. Res.Vol.28,pp17551763.
FloridaLAKEWATCH(2000)ABeginnersGuidetoWaterManagementTheconceptof limitingnutrients.
UniversityofFloridaInstituteofFoodandAgriculturalSciences.Circular102.
http://lakewatch.ifas.ufl.edu/LWcirc.html
Harris,Victoria(2005)Nuisancealgae
onLakeMichiganshores.UniversityofWisconsinSeaGrant
Institute.Publicinformationbulletin.
Kawaga,H.andM.Togashi(1989)Contributionofdissolvedcalciumandmagnesiumtophytoplanktonic
particulatephosphorusconcentrationattheheadsoftworiverreservoirs.Hydrobiologia
183:185193
Kennedy,J.Todd(2004)UseofNitrogentoPhosphorus
RatiosasPredictorsofNitrogenFixingAlgaein
JordanLake.NorthCarolinaDivisionofWaterQuality.
King,K.W.,J.C.Baloghb,K.L.HughesandR.D.Harmeld(2006)NutrientLoadGeneratedbyStorm
EventRunofffromaGolfCourseWatershed.USDAARSSurfaceWaterQualityTechnicalReport.
Koutsoukos,Petros(2000)Currentknowledgeofcalciumphosphatechemistryandinparticularsolid
surface‐waterinterfaceinteractions.InstituteofChemicalEngineeringandChemicalProcess.
UniveristyofPatras,Greece.
Masayoshi,MoriandKagawaHisanor(2000)Effectsofcalciumandmagnesiumondissolvedoxygen
concentrationontheIshiteRiver.Japanese Journal of LimnologyVol.
61,No.1,pp1120.
Moreno,EdgarC.,ThomasGregory,andWaterE.Brown(1966)SolubilityofCa
.
HPO
4.
2H
2
Oand
formationofIonpairsinthesystemCa(OH)H
3
PO
4
H
2
0.Journal of Research of the National
Bureau of Standards-Physics and Chemistry.Vol70A,No6:545552.
Morgan,AllysonM.,ToddJ.Royer,MarkB.David,LowellGentry(2006)Relationshipsamongnutrients,
chloryphylla,anddissolvedoxygeninagriculturalstreamsinIllinois
. J Envir. Qual. 35:1110
1117
Plant,L.J.andW.A.House(2002)Precipitationofcalciteinthepresenceofinorganicphosphate.Center
forEcologyandHydrology,Dorchester,UK.
Royer,ToddV.,MarkB.David,LowellE.Gentry,CoreyA.Mitchell,KarenM.Starks,ThomasHeatherlyII,
andMattR.Whiles(2008)Assessmentof
chlorophyllaasacriterionforestablishingnutrient
standardsinthestreamsandriversofIllinois. J. Environ.Qual 37:437447.
Schaller,JamieL.,ToddV.Royer,andMarkB.David(2004)Denitrificationassociatedwithplantsand
sedimentsinanagriculturalstream. J. N. Am. Benthol. Soc.,23(4):667676.
20
Strang,T.J.,D.G.Wareham(2006)Phosphorusremovalinawastestabilizationpondcontaining
limestonerockfilters.J. Environ. Eng. Sci.5:447457.
USGSGagingStation0318 3500,GreenbrierRiveratAlderson,WV.RealtimeWebsite:
http://waterdata.usgs.gov/nwis/uv?cb_00060=on&cb_00010=on&cb_00400=on&cb_00300=on
&format=gif_default&period=36&site_no=03183500
USGSGagingStation0318 3500,GreenbrierRiveratAlderson,WV.ArchivesWebsite:
http://waterdata.usgs.gov/nwis/monthly?referred_module=sw&site_no=03183500&por_03183
500_1=1547792,00060,1,189508,2007‐
Weiner,EugeneR.,Applications of Environmental Aquatic Chemistry- A Practical Guide, Second Edition
(2008)CRCPress,TaylorandFrancisGroup,NewYork.pp53,6676,96104.
Wurts,WilliamA.andRobertDurborow(1992)InteractionofCarbonDioxide,pH,Alkalinity,and
HardnessinFishPonds.SouthernRegionalAquacultureCenter,PublicationNo.464.
SecondarySources
Avnimelech,Y.(1980)
Calciumcarbonatephosphatesurfacecomplexincalceroussystems.Nature,
20:2552557.
Citedby–Bedore(2008)
Feenstra,T.P.,P.L.deBryn(1979)Formationofcalciumphosphatesinmoderatelysupersaturated
solutions.J. Phys. Chem.83:475479
CitedbyDiaz(1994)
Ferguson,J.F.,D.Jenkins,andJ.Eastman(1973)Calciumphosphateprecipitationin
slightlyalkalinepH
values.Journal of Water Pollution Control Federation,45:620631
CitedbyDiaz(1994)
Ferguson,J.F.,D.Jenkins,andW,Stumm(1970)Calciumphosphateprecipitationinwastewater
treatment.Chem. Engng. Symp. Serv.67:279286. 
CitedbyDiaz(1994)
Hartley,A.M.,W.A.House,M.E.Callow,andB.S.C.Leadbetter(1997)Coprecipitation ofphosphatewith
calcitein
thepresenceofphotosynthesizinggreenalgae.Water Res.31:22612268.
Citedby–Strang(2006)
Hsu,K.J.(1963)SolubilityofdolomiteandcompositionofFloridagroundwaters.J. Hydrol.1:288310.
CitedbyDiaz(1994)
Jenkins,D.J.F.Ferguson,A.B.Menar(1971)Chemicalprocessesforphosphateremoval.Wat. Res.,
5:369389.
CitedbyDiaz(1994)
Otsuki,A.andR.G.Wetzel(1972)Coprecipitationofphosphatewithcarbonatesinamarllake. Limnol.
Oceanogr.17:763767
CitedbyDiaz(1994)
Redfield,A.(1958)TheBiologicalControlofChemicalFactorsintheEnvironment. Am. Sci. 45:205-221
Citedby–Kennedy(2004)
Reddy,K.R.,R.D.DuLaune,W.F.DeBusk,
M.S.Koch(1993)Longtermnutrientaccumulationratesinthe
theEverglades. Soil Sci. Soc. Am. J.57:11471155.
Citedby–Strang(2006)
Salinger,Y.,Y.Geifman,M.Aronowich(1993),Orthophosphateandcalciumcarbonatesolubilitiesinthe
upperJordanwatershedbasin.Journal of Environmental Quality,22:672677.
Citedby–Bedore(2008)
21
Attachment1

Milepoint
0
10
20
30
40
50
60
70
80
90
60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 17 15 13 12 10 8 6 4 2 0
PercentImpacted
AlgaeImpactonGreenbrierRiver
BottomCover
WaterColumnFill
Phosphorusug/l
CaldwellRonceverteAldersonTalcott
22
Attachment2
2008Data
2008Data
23
2008Data
2008Data
24
Attachment3
DryConditionsSnapshot
TotalPhosphorusLoading(lbs/day)
S
tormEvent
PhosphorusConcentrations(mg/l)
duringa2”rainfallevent
25
Attachment4
GreenbrierRiveratAlderson
Deviationfromtheaveragesummerflow,JunethroughOctober,18962007
(Theaveragesummerflowwas807cfs)
26
SDG
800
400
0
400
800
1200
1600
1896 1906 1916 1926 1936 1946 1956 1966 1976 1986 1996 2006
Deviationfromaverge(cfs)