Skidmore College Skidmore College
Creative Matter Creative Matter
Economics Student Theses and Capstone
Projects
Economics
2016
Analyzing Managerial E5ciency in Major League Baseball: A Analyzing Managerial E5ciency in Major League Baseball: A
Sabermetric Approach Sabermetric Approach
Jebediah C. Clarke
Skidmore College
Follow this and additional works at: https://creativematter.skidmore.edu/econ_studt_schol
Part of the Economics Commons
Recommended Citation Recommended Citation
Clarke, Jebediah C., "Analyzing Managerial E5ciency in Major League Baseball: A Sabermetric Approach"
(2016).
Economics Student Theses and Capstone Projects
. 18.
https://creativematter.skidmore.edu/econ_studt_schol/18
This Thesis is brought to you for free and open access by the Economics at Creative Matter. It has been accepted
for inclusion in Economics Student Theses and Capstone Projects by an authorized administrator of Creative
Matter. For more information, please contact [email protected].
Analyzing Managerial Efficiency in Major League Baseball:
A Sabermetric Approach
Jebediah C. Clarke
A Thesis Submitted to
Department of Economics
Skidmore College
In Partial Fulfillment of the Requirement for a B.A. Degree
Thesis Advisor: Joerg Bibow
May 3
rd
, 2016
2
Abstract
Modern statistical analysis has allowed for teams to more accurately measure Major
League Baseball player performance. However, other than tracing wins there are few ways to
track the performance of on-field managers whose strategies, decisions, and expertise
fundamentally influence the outcome of each game. I begin this paper by investigating and
critiquing prior empirical analyses that have attempted to quantify the effect of managerial skill
on team performance. Using Stochastic Frontier Analysis and data from the 2008-2015 MLB
seasons, I expand on previous research by calculating managerial efficiency estimates while
including control variables that better objectively measure player performance. I find that the
least efficient managers achieve winning percentages that are around 80% of what is possible,
given their players’ talent level. I then test the foundation from which MLB General Managers
pay their managers. By using an ordinary least squares regression, I find that managers are
rewarded with contracts based on management experience, but not efficiency. Thus, I provide
evidence of an inefficiency in the market for MLB managers. Finally, I explain the implications
of this inefficiency and how further research is needed to analyze managerial effectiveness at the
in-game level.
3
I. Introduction
The goal of any manager, in any industry, is to efficiently combine inputs to generate
output. When firms in two industries use the same amount of inputs, yet have different output
levels, the implication is that one of the firms produced inefficiently (Kahane, 2005). In the case
of professional sports, the goal of the firm (team) is no different— to efficiently turn inputs into
output. In sports, the inputs are primarily player and managerial talent levels.
1
Output is
measured by the number of games won. Quantifying the effect of managers on inputs and
outputs in many industries can be difficult due to lack of data. However, the availability of data
in professional sports provides scholars with an advantage in studying managerial impact on
team performance.
The rise of advanced statistical analysis in Major League Baseball has fundamentally
changed the game. Michael Lewis’ (2003) Moneyball: The Art of Winning an Unfair Game,
brought the use of advanced statistics in baseball to the attention of the public masses. Lewis
(2003) wrote the story of the 2002 Oakland Athletics and General Manager Billy Beane— and
how a small-market team used unconventional player-evaluation methods to field a successful
group of players. Beane favored lesser-used statistics like on-base percentage over the more-
traditional counts of a player’s homeruns and runs-batted-in. His wisdom was simple— the
Athletics’ payroll could not afford to acquire high-profile players, so they needed to find an
inefficiency in the market for players. This inefficiency was on-base percentage. Teams
undervalued high on-base percentages, and thus, Beane was able to cheaply acquire players who
routinely got on base (and therefore, more likely to score runs), regardless of whether they did so
1
In the case of this paper, the term “manager” and “head coach” should be considered the same.
In Major League Baseball, the on-field leader is called the “manager,” while the NFL, NHL, and
NBA use the term “head coach.”
4
via hits, walks, or hit-by-pitches. While other teams valued a player’s physical makeup— his
arm strength, bat speed, and 60-yard dash time, Beane could not care less. As Lewis (2003)
writes of Beane’s right-hand-man, Paul DePodesta,
Paul had said the scouts ought to go have a look at a college kid named Kevin Youkilis.
Youkilis was a fat third baseman who couldn't run, throw, or field. What was the point of
going to see that? (Because, Paul would be able to say three months later, Kevin Youkilis
has the second highest on-base percentage in all of professional baseball, after Barry
Bonds. To Paul, he'd become Euclis: the Greek god of walks.) (p.19)
Since then, a new field of statistical analysis has enveloped baseball. Coined “sabermetrics,”
after the Society for American Baseball Research (SABR)— of which many of baseballs’ current
writers and statisticians are members. The abundance of freely-available data has allowed player
analysis to reach depths never reached before. New statistics like wins-above-replacement
(WAR), fielding independent pitching (FIP), and weighted on-base average (wOBA) allows
teams to better objectively evaluate player performance.
While the sabermetric movement has revolutionized how MLB teams evaluate players,
there is still one component of the team that front-offices know little about: the manager. Other
than tracing wins, there are few ways to evaluate the performance of the on-field manager. The
job of a baseball manager is to make decisions that will benefit the team. More specifically, to
help the team win. Baseball managers have to make numerous decisions throughout the course of
a game. The manager must comprise the starting batting order, defensive positions, and pitching
rotation. Decisions that a manager must make during a game consist of defensive alignment,
pitch calling, baserunning tactics, and hitter and pitcher substitution, among others. Successful
managers are also required to make sure the right player is in the right situation. For example,
5
certain pitchers are more effective against left-handed hitters, and vice-versa. It is up to the
manager to put his players in situations where they are more likely to succeed. Furthermore,
skillful managers also know the tendencies of their opponent, and thus create a game plan that
will most effectively diminish the opponent’s strengths. Lastly, regarding sabermetrics, it is up to
the manager to decided how to apply advanced statistical analysis to in-game decision making.
The staging of this paper will occur as follows. Section II provides a brief history of
research related to measuring managerial skill in professional sports. Section III describes the
econometric model and data that I use in my research. Section IV explains results and
implications of managerial performance. Section V offers further areas of possible research.
Section VI summarizes and concludes the paper.
II. Literature Review
The history of measuring managerial skill in Major League Baseball can be divided into a
few distinct methodologies. The earliest practice, introduced by Porter & Scully (1982), uses
Stochastic Frontier Analysis (SFA) to calculate managerial efficiency in MLB via a production
function consisting of an output (winning percentage) and inputs (player and managerial
performance statistics). This method has been further developed and applied to MLB by
Ruggiero, Hadley, & Gustafson (1996) and Smart, Winfree, & Wolf (2008). In a similar fashion,
Kahane (2005) uses SFA to measure managerial efficiency in the National Hockey League.
Other papers have used a production function (independent of SFA) to investigate the effect of
managers on team performance (Kahn, 1993; Singell, 1993; Scully, 1994). Similar to SFA, Data
Envelopment Analysis (DEA) has also been used to quantify managerial efficiency in
professional sports. Fizel & D’itri (1996) use DEA to measure managerial efficiency in college
6
basketball. Volz (2009) and Lewis, Lock, and Sexton (2009) apply DEA to managers in MLB,
while Young Han Lee (2009) uses the same method to calculate managerial efficiency in Korean
professional sports. Lastly, Horowitz (1994) and Ruggiero and Hadley (1997) use the
Pythagorean Theorem of Baseball method to calculate managerial efficiency in MLB by
comparing a team’s actual winning percentage to an estimate of maximum possible winning
percentage based on runs scored and runs allowed.
1. Stochastic Frontier Analysis (SFA) Literature
Despite the early knowledge that the role of management was crucial to the overall
production function of a business, very little was known about the actual impact managers had
on output. This was due to the fact that little applicable data existed and the difficulty of
separating the outputs and inputs of a traditional business (Porter & Scully, 1982). However, the
availability of baseball data and knowledge of outputs (wins) and inputs (player and managerial
performance statistics) made measuring managerial efficiency both appealing and feasible.
Porter and Scully (1982) created a Cobb-Douglass production function that compared
wins (output) to inputs of player skills, which measure team hitting performance and team
pitching performance. Team Slugging percentage (SLG) was used as the hitting input and team
strikeout to walk ratio (K/BB%) was used as the pitching input. These statistics were used, over
more traditional ones like batting average and pitcher’s win-loss record, because they best
measure a player’s performance independent of factors he cannot control (Porter & Scully,
1982). For example, batting average is not affected by extra-base hits, so power hitters are not
accurately represented. And win-loss record is greatly influenced by a team’s bullpen, which is
beyond the control of the starting pitcher.
7
From the aforementioned production function, Porter and Scully (1982) calculated
managerial efficiency for the years 1961-1980. Results showed that an additional year of
management resulted in improved efficiency, at a decreasing rate. Efficiency increased by 0.8%
per year, reaching a maximum of 94.4% after 12.5 years (Porter & Scully, 1982). Intuitively, this
makes sense. A manager is likely to stay with a team if the team continues to win. Porter and
Scully (1982) then went on to find average managerial efficiency by team. While most teams
with high winning percentages over the years 1961-1980 also had high managerial efficiencies,
the correlation was not perfect. Teams such Boston, Detroit, and Minnesota had lower efficiency
scores compared to American League teams with similar winning percentages.
2
While Porter and Scully’s (1982) research was a breakthrough in the evolution of
measuring managerial skill, their methodologies had flaws. Ruggiero et al. (1996) used a
production function with player and managerial inputs to calculate managerial efficiency during
the years 1982-1993. In essence, Porter and Scully (1982) defined player skill as a factor of team
winning percentage but did not offer any insight into how managers may affect team
performance. Results suggest that major league teams can achieve a winning season in two ways.
A team can win with superior player talent while having an inefficient manager, such as the 1990
Cincinnati Reds. Or, a team can win with inferior player talent so long as inputs are managed
efficiently, as proven by the 1987 Minnesota Twins (Ruggiero et al., 1996).
Smart et al. (2008) uses SFA to calculate managerial efficiency scores in the seasons
from 1991-2005.
3
Additionally, they investigate which managerial characteristics have the
2
From 1961-1980, the Minnesota Twins had a mean winning percentage of .521 and a mean
efficiency score of .849. For contrast, the Kansas City Royals had a mean winning percentage of
.526 and a mean efficiency score of .921.
3
Joe Torre, manager the St. Louis Cardinals and New York Yankees, had highest average
efficiency score (.8809 over 14 seasons). Jim Riggleman of the Chicago Cubs and San Diego
8
greatest impact on efficiency, and what qualities teams are paying their managers for. Total
offensive resources (a weighted version of on-base percentage, plus net stolen bases) was used as
the offensive/hitting input and team earned run average was used as the defensive/pitching input.
The managerial input variables were split into three sections—manager’s MLB playing
experience, MLB managerial experience, and managerial change. Manager’s playing experience
included whether the manager played MLB, whether he has been a position player, number of
games played, number of years played, and number of teams played for. MLB managerial
experience included years managing current team, manager of the year awards, managerial
winning percentage, years of MLB managerial experience, and number of MLB teams managed.
The managerial change group included dummy variables for first year managing current team,
in-year managerial change, and manager’s first year in MLB. Interestingly, only the managerial
change inputs were significant at a 10% level. The others were insignificant.
Smart et al. (2008) then analyzed the relationship between efficiency and managerial
characteristics (measured by the aforementioned qualities). All but the manager’s MLB playing
experience variables were significant at the 5% level. In other words, more efficient managers
often have more managerial experience but do not necessarily need to have MLB playing
experience. The only problem with this conclusion is that it is hard to know if managerial
experience actually contributes to efficiency, or whether managers who are efficient early in their
career simply keep their jobs for a longer period.
Lastly, Smart et al. (2008) found that a manager’s salary is not correlated with efficiency
but is with experience. Teams reward more experienced managers with higher salaries but aren’t
Padres had the lowest (.7273 over 7 seasons). This can be interpreted as—Joe Torre achieved a
winning percentage that was 88% of what was possible, given his players’ talent level.
9
rewarding the most efficiency managers— resulting in an inefficiency in the labor market for
MLB managers.
Kahane (2005) uses SFA to calculate managerial efficiency in the NHL. The sample
included seasons form 1990-1998. The author finds that more historically successful coaches are
able to use their player inputs more efficiently than less successful coaches. Furthermore, a coach
that was a former player is, on average, more efficient than a coach who was not a NHL player.
2. Production Function Literature
The production function method looks at the effect of managers on team performance,
albeit without providing team-by-team or managerial efficiency scores. Kahn (1993) looked at
how player ability is affected by high and low-quality managers, respectively. Team winning
percentage is described as a function of player statistics (SLG, K/BB%, stolen bases, fielding
percentage, batting average, pitcher’s strikeouts, and pitcher’s walks) and managerial
characteristics (years of managerial experience and lifetime winning percentage). Data was
obtained during the seasons from 1969-1987. Results showed that highly skilled managers have a
positive influence on player performance more so than less-skilled managers.
Singell (1993) had a production function similar Kahn (1993), but included a greater
variety of managerial inputs. Included were variables to account for the manager’s experience as
a MLB player and management experience in the minor leagues. The sample included seasons
from 1945-1965 and results showed that management experience significantly impacted winning
percentage and player performance. Certain managers can improve a players slugging percentage
by up to 30 points over the course of a season (Singell, 1993).
10
Scully (1994) further explores of the topic of measuring managerial efficiency via a
production function, and how tenure is related to efficiency. Managers use their player’s
offensive (hitting) and defensive (pitching and fielding) skills to maximize scoring and minimize
opponents scoring. Data included team winning percentage, runs scored, and runs allowed.
Results show that managerial efficiency is correlated with years of managerial experience.
Managerial efficiency is calculated by dividing actual winning percentage by potential winning
percentage.
4
3. Data Envelopment Analysis (DEA) Literature
DEA is a linear programming-based method for evaluating the relative efficiency of
turning inputs into output (Lewis et al., 2009). Fizel and D’itri (1996) use DEA to estimate
managerial efficiency in NCAA Division 1 basketball from 1984-1991. Winning percentage is
described as function of player talent and the strength of the opponent. They find a large gap
between the least and most-efficient coaches and that years of managerial experience does not
effect efficiency. Results imply that NCAA institutions base their hiring of coaches on winning
percentage and not efficiency. The “best” coaches are often mistakenly not hired or fired (Fizel
& D’itri, 1996).
4
For example, consider the following hypothetical situation. Suppose manager Mike Matheny
and the St. Louis Cardinals have an actual winning percentage of .70 in year X, but based on
runs scored and runs allowed, the Cardinals have a predicted winning percentage of .55. Assume
that this is the greatest difference between actual and predicted winning percentage in MLB
during year X. Now suppose that the manager John Farrell and the Boston Red Sox have an
actual winning percentage of .60 and a predicted winning percentage of .65. Farrell’s managerial
efficiency is measured by dividing actual winning percentage (.60) by the sum of predicted
winning percentage and the largest residual (.65+.15). His measure of managerial efficiency
equals .75. Matheny’s efficiency equals one, making him most efficient manager in year X.
11
Volz (2009) later applies DEA to managerial efficiency in MLB to observe the effect of
minority hiring practices. Winning percentage is described as a function of player salary inputs
(as opposed to player statistics). Volz (2009) argues that player statistics over the course of a
season are likely influenced by the quality of a manager (a high-quality manager may cause a
pitcher to have a low ERA). Results show efficiency scores for managers with at least 200 games
managed during the season from 1986-2005.
5
Others have applied DEA to measure efficiency in
MLB including Lewis et al. (2009).
Young Han Lee (2009) uses DEA to measure managerial efficiency in Korean
professional baseball, basketball, and soccer leagues. The sample included the 2007 seasons and
results showed that management efficiency is not always correlated with payroll. Richer teams
often win because they are capable of consistently acquiring more talented players. However,
richer teams occasionally have inefficient management— they underperform (in terms of
winning percentage) compared to the talent level of their players. On the other hand, financially
inferior teams often display greater efficiency as their expected winning percentage is low given
they often have less skilled players.
4. Pythagorean Theorem of Baseball Literature:
Introduced by notable baseball statistician Bill James in 1986, the Pythagorean Theorem
of Baseball estimates a team’s winning percentage based on runs scored and runs allowed.
6
Horowitz (1994) evaluates managers by comparing a team’s predicted winning percentage
5
Ron Gardenhire of the Minnesota Twins had the highest efficiency score in the sample (100%
over 647 games). Bob Boone of the Kansas City Royals and Cincinnati Reds had the lowest
(86% in 815 games).
6
% =
 
 
 
12
(based on the Pythagorean theorem) to their actual winning percentage. The assumption here is
that any difference is attributed to the manager’s talent (or lack there of). 18 managers who
managed for at least 10 seasons from 1965-1992 are evaluated. Results imply that there is a
statistical difference between the best and worst managers, however, even the worst managers
are relatively successful.
Ruggiero and Hadley (1997) critiqued the Pythagorean Theorem as way to evaluate MLB
managers. The authors suggest that methods used by Horowitz (1994) were inherently flawed.
Horowitz (1994) failed to control for player talent. Managers who have more talented players
appear better than managers on teams with less talented players. For example, Earl Weaver of
the Baltimore Orioles was the highest-ranked manager by Horowitz (1994) while Al Lopez of
the Cleveland Indians ranked near the bottom. However, Ruggiero and Hadley (1997) found that
Lopez was actually a better manager than Earl Weaver when his team was expected to outscore
the opponent by 20%. If the team outscored its opponent by less than 20%, Weaver was the
better manager. As mentioned before, managerial skill should be measured at a given level of
player talent. If not, a manager may incorrectly appear better than another manager.
III. Methods
While more recent literature has used data envelopment analysis (DEA) to measure
managerial skill in MLB, I use Stochastic Frontier Analysis (SFA) in my estimates due to its
simplistic nature. SFA’s sole requirement is a specified Cobb-Douglass production function. I
then use STATA to estimate the function and calculate managerial efficiency scores. Previous
studies have included player statistics to control for varying talent level across teams, but (to my
knowledge) no studies have included sabermetric statistics.
13
Stochastic Frontier Analysis (SFA) was developed by Aigner et al. (1977) and Meeusen
and van den Broeck (1977). It assumes a Cobb-Douglass production function (expressed in log
form) and can be used to assess the effects of managerial skill on team performance in MLB.
SFA is used, over the more traditional ordinary least squares (OLS) regression, because of its
ability to explain the topmost and bottommost performers in the data by showing how efficiently
the inputs are used in generating output. On the other hand, OLS provides an explanation of the
“average” behavior that can be applied equally to all data points. SFA can determine the
efficiency of MLB managers– or how well managers can lead their team to wins, given their
level of playing talent.
The sample for the Stochastic Frontier Analysis consists of all MLB teams that competed
in the seasons from 2008-2015. The dependent variable is the proportion of a team’s wins to the
total number of games played (or, winning percentage). In order to account for the level of
playing talent on each team, offensive and defensive team statistics are included as independent
variables. FanGraph’s position player wins-above-replacement (WAR) statistic (incorporates a
player’s hitting, baserunning, and fielding ability) is used as the offensive input and Fangraph’s
pitching WAR statistic is used as the defensive input. Simply put, WAR is a statistic that
attempts to summarize a player’s total value into a single number. The number compares how
many wins, over a season, a player is worth to his team compared to a “replacement-level”
player. A “replacement-level” player is defined by FanGraphs as a freely available minor leaguer
or a AAAA player from the teams’ bench. To give a bit of context, Bryce Harper led MLB in
2015 with a 9.5 position player WAR. Clayton Kershaw had the highest WAR for pitchers at 8.6.
On the other extreme, Pablo Sandoval, the Red Sox prized free-agent signing, had a WAR of -2.0
which was the lowest among qualified hitters (Yes, the Red Sox would have been better off
14
starting a minor leaguer at third base). Lastly, a team comprised entirely of replacement-level
players (or all players having a WAR equaling zero) is projected to finish the season with 48
wins and 114 losses.
Similar to my paper, the majority of previous literature on measuring managerial skill in
professional sports uses team statistics as inputs. The other method, used in far fewer papers,
uses team payroll as an independent variable. The argument against the payroll method is that,
especially in MLB, a team’s payroll may not necessarily reflect the true value of a team. A MLB
player does not reach free agency (and thus, does not earn a salary that reflects his true market-
value) until his seventh year of MLB service. A player makes the major league minimum of
$500,000 during his first three years of service. Salary over the next three years can be an
amount agreed-upon between the player and team. If the two sides cannot come to an agreement
(which is often the case), the salary is determined through a third-party arbitration hearing. The
two sides submit a salary request and the arbitrator decides which is more accurate. The player
then receives that salary. So, a team with many young players will have a payroll far below the
actual value of the 25 players. Furthermore, the payroll method does not take into account the
movement (i.e. trades, signings, and releases) of players during the season. Since only before-
season payroll data is available, the impact of a blockbuster mid-season trade is not reflected in
the measurement. However, the impact of player movement is recognized by team statistics.
Similar to previous literature, managerial inputs are included in the production function
to examine the impact of managers on team winning percentage. The following are included as
independent variables (managerial data was obtained from www.baseball-reference.com):
15
Number of seasons managed (at the beginning of the current season)a measure of managerial
experience. Experience is expected to reflect accumulated expertise in player motivation and
development and in adapting to the movement of players (i.e. injuries, trades, releases) (Smart &
Wolfe, 2003). It is expected to increase efficiency and thus should have a positive sign.
Career winning percentage (at the beginning of the current season) another measure of
managerial experience. Managers with previous success should continue to have success— based
on winning tradition, attitude, and approaches to their current team (Smart & Wolfe, 2003).
Again, it is expected to increase efficiency and thus have a positive sign.
Manager-of-the-year award this variable is equal to 1 if the manager has won a MLB manager
of the year award (yearly award given to best manager in both the American and National
Leagues-- as voted on by the Baseball Writers Association of America), 0 otherwise. The award
indicates previous success and management skills. This variable is expected to have a positive
sign.
MLB player this variable is equal to 1 if the manager has MLB playing experience, 0
otherwise. The hypothesis is that a manager who was formerly a player may have a better
understanding of the game than a manager who has not (Kahane, 2005). This variable is
expected to have a positive sign.
In-season managerial changethis variable is equal to 1 if there was a mid-season managerial
change, 0 otherwise. While managers may change during the season for a variety of reasons (i.e.
16
illness or change in ownership), most managerial change is a result of poor performance.
However, it is unlikely that a interim manager will be a able to improve the team drastically
(Smart & Wolfe, 2003). From 2008-2015, there were 26 mid-season managerial changes. This
variable is expected to have a negative sign.
National League dummy variable – this variable is equal to 1 if the team plays in the National
League, 0 for the American League. It is hypothesized that NL managers, on average, will be
less efficient than AL manages because of NL-specific rules. The is no designated hitter in the
NL, so managers often pinch-hit for pitchers late in games. NL managers make more decisions,
and thus, have more opportunities to appear less efficient. This variable is expected to have a
negative sign.
I use STATA to estimate managerial efficiency via the following production function,
% =
+
 +
 +
 +
 +
 +
 +
 +
 + (1)
where logwin% represents the winning percentage expressed in log form, loghWAR represents
FanGraph’s position-player WAR, logpWAR represents FanGraph’s pitching WAR, logyearexp
represents years of managerial experience prior to the current season, logcareerwinpct represents
managerial career winning percentage prior to the current season, award is a dummy variable for
whether the manager has won a manager-of-the-year award or not, player is a dummy variable
for whether the manager has MLB playing experience or not, change is a dummy variable for
17
whether the team had a in-season managerial change or not, NL is a National League dummy
variable, and ε is an error term.
IV. Results
Table 1: Descriptive statistics for MLB teams from 2008-2015
(1)
(2)
(4)
(5)
VARIABLES
N
mean
min
max
wpct
240
0.500
0.315
0.636
pitchWAR
240
14.33
2
28
hitWAR
240
19.00
-1.300
37.50
yearsexp
240
7.203
0
31.27
manwpct
240
0.460
0
0.649
MLBplayer
240
0.796
0
1
NL
240
0.521
0
1
change
240
0.108
0
1
award
240
0.421
0
1
Descriptive statistics for all variables described above appear in Table 1. As noted above,
the data set includes season from 2008-2015. During this time period, MLB consisted of 30
teams which results in 240 observations.
18
Table 2: OLS and Stochastic Frontier Analysis (SFA) estimates of equation 1
Dependent variable: log(winning percentage)
(1) (2)
VARIABLES OLS SFA
logpwar, 0.183*** 0.180***
(0.0115) (0.0103)
loghwar 0.159*** 0.154***
(0.00972) (0.00875)
logyearsexp 0.0113** 0.0108**
(0.00502) (0.00472)
logmanwpct 0.0130 0.0133
(0.0515) (0.0482)
award -0.00901 -0.0123
(0.0107) (0.0101)
MLBplayer 0.00335 0.000623
(0.0106) (0.0101)
NL -0.0173** -0.0151*
(0.00863) (0.00823)
change -0.0334** -0.0453***
(0.0142) (0.0140)
Constant -1.626*** -1.537***
(0.0602) (0.0582)
Observations 220 220
R-squared 0.806
Prob >= chibar2 0.010
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
However, regression analysis only includes 220 observations (Table 2). This is attributed
to the logarithmic requirement for variables included in stochastic frontier analysis. The sample
includes 20 managers who have no managerial experience, therefore, their yearsexp and
careerwinpct totals are equal to zero. Taking the log of zero is not defined, and thus, a missing
value is created. An ordinary least squares regression (Table 2) shows that independent variables
19
logpWAR and loghWAR are significant at the 1% level. Logyearsexp, change, and NL are
significant at the 5% level. Finally, logmanwpct, award, and MLBplayer are insignificant. The
insignificance of the logmanwpct is likely attributed to multicollinearity with logyearsexp.
Stochastic frontier analysis (SFA) is then used to test for inefficiencies in generating winning
percentage from the specified input variables (Table 2). As Smart et al. (2008) offer,
using a Cobb-Douglass production function allows for the possibility of non-linear
effects of offensive and defensive inputs. Since we are estimating a production frontier all
data points must be within the frontier. The error terms, therefore, are constrained to be
positive and the most efficient manager will have an error term of zero. (p.313)
I can reject the null hypothesis that OLS is the best method to measure this production function
because the p-value from the SFA test is 0.01. The coefficient for logpWAR is positive and
statistically significant at the 1% level, indicating that teams with greater pitching talent tend to
win more, all else equal. In other words, a 1% increase in pitching WAR results in a 0.18%
increase in winning percentage, on average. Similarly, the coefficient for loghWAR is positive
and statistically significant at the 1% level, indicating that teams with greater position-player
talent tend to win more, all else equal. A 1% increase in position-player WAR increases winning
percentage by 0.15%, on average.
Turning to the coaching measures, logyearsexp is positive and statistically significant at
the 5% level. This implies that more experienced managers tend to win more than less
experienced managers. Logmanwpct, award, and MLBplayer are not statistically significant at
any level. As mentioned above, the insignificance of logmanwpct is likely due to
multicollinearity with the logyearsexp variable. Smart et al. (2008) found similar results.
Managers who win more tend to stick around for longer periods of time. Intuitively, this makes
20
sense— a manager’s retention is decided primarily by his ability to win. This insignificance of
award implies that managers who have won at least one manager-of-the-year award do not win
more than trophy-less managers. The results of MLBplayer suggest that playing experience has
no affect on managerial quality. Managers who were once players have no advantage in
generating wins than managers who never made it to The Show.
7
The coefficient for NL is negative and statistically significant at the 10% level. As
hypothesized, the negative coefficient shows that, on average, National League managers are less
efficient than their American League counterparts. The coefficient for change is negative and
statistically significant at the 1% level. As expected, a mid-season managerial change has a
negative impact on winning percentage. Teams that change managers mid-season likely do so
because of poor performance, and therefore, a lower winning percentage than a team that did not
make a change is expected, on average.
Equation 1 was estimated as follows:
% = 1.537 +
(
0.180
)
 +
(
0.154
)
 +
(
0.011
)

+
(
0.013
)

(
0.012
)
 +
(
0.000
)

(
0.045
)
 (0.015) +
Efficiency for each manager is calculated as the ratio of actual winning percentage to the
expected winning percentage (obtained from equation 1), given the team’s offensive and
defensive resources. I calculate the efficiency of each manager with the following:
7
In other words-- Major League Baseball
21
 =
 %
 %   ()
(2)
For example, the 2010 Los Angeles Angels had a winning percentage of .494. They had a team
position-player WAR of 13.5 and a team pitching WAR of 13.5. Manager Mike Scioscia had 10
years of managerial experience, a .542 career winning percentage in seasons priors to 2010, had
won at least one manager-of-the-year award, and was a former MLB player. The Angels had no
mid-season managerial change and are part of the American League. By substituting these values
into equation (1), it can be seen that the 2010 Angels had an expected winning percentage of
.517. Then, an efficiency score can be calculated by dividing the Angels actual winning
percentage (.494) by their expected winning percentage (.517). The Angels’ efficiency rating for
2010 was .956. This can be interpreted asthe 2010 Angels achieved a winning percentage that
was 95.6% of what was possible, given their level of playing talent. After determining
managerial efficiency for managers from 2008-2015, I attempt to determine if efficiency is
correlated with managerial salaries. In other words, are teams paying their managers based on
their efficiency?
22
Table 3: Average Efficiency for Managers with 4+ Years of Experience during 2008-2015
(greatest to least)
+-------------------------------------------------------------------------------------------------------------+
Manager Team(s) Years in Sample Mean_Eff SD
---------------------------------------------------------------------------------------------------------------
Matheny Cardinals 4 .976899 .0048794
Hurdle Pirates 6 .962354 .0260184
Gonzalez Marlins, Braves 7 .9616287 .0211575
Showalter Orioles 5 .9615383 .0233062
Scioscia Angels 8 .9603903 .023546
Girardi Yankees 8 .9554107 .0165274
Baker Reds 6 .9532594 .0088397
Washington Rangers 6 .9519384 .0111964
LaRussa Cardinals 4 .9498457 .0054451
Manuel, C. Phillies 5 .947523 .044792
Bochy Giants 8 .947315 .0260736
Mattingly Dodgers 5 .9461148 .0125879
Ventura White Sox 4 .944706 .0358148
Guillen White Sox, Marlins 4 .9424755 .0183252
Melvin Athletics, Diamondbacks 5 .942255 .0448053
Gardenhire Twins 7 .9420212 .0431298
Maddon Rays, Cubs 8 .9382597 .035593
Farrell Blue Jays, Red Sox 5 .9363688 .044357
Francona Red Sox, Indians 7 .9350508 .0369094
Gibbons Blue Jays 4 .9329651 .0110666
Leyland Tigers 6 .9312163 .0385762
Yost Royals, Brewers 6 .9278911 .0443375
Roenicke Brewers 4 .9275008 .030093
Black Padres 7 .9188949 .0585606
Wedge Indians, Mariners 5 .9131983 .0290577
Collins Mets 5 .9046489 .0394625
All (n= 220) .9392692 .035403
Table 3 ranks MLB managers by their average efficiency during years 2008-2015. Mean
efficiency scores, standard deviations, years managed in sample, and the teams for which they
managed are presented for managers with at least four years of experience. 26 managers were
identified. Mike Matheny of the St. Louis Cardinals ranks as the most efficient manager during
the time period (0.977) and also is the most consistent (sd = 0.005). Clint Hurdle of the Pittsburg
23
Pirates is the second most efficient manager during that span (0.962, sd= 0.026). On the other
extreme, Terry Collins of the New York Mets ranks as the least efficient manager (0.905), while
Bud Black of the Sad Diego Padres is the most inconsistent (sd= 0.059).
Table 4: Managerial efficiency differences between groups above and below the sample
mean for managers with 4+ years of experience from 2008-2015
Differences in the means of managers listed in Table 3 were tested via t-tests (Table 4).
The mean efficiency of the sample (n= 143) was 0.943. There were 91 instances in which a
manager achieved an efficiency score above the mean, and 52 when a manager scored below.
The mean efficiency of these two groups (0.963, 0.909) is statistically different (p< 0.001). In
short, while the range of the mean managerial efficiency scores is relatively limited (0.905 to
0.977), there is a statistical difference between the best and worst performers. On the other hand,
these results imply that even the worst managers do a credible job.
Examining the Market for MLB Managers
71 managerial salaries from 2008-2015 were obtained from Cot’s Baseball Contracts.
Due to the fact that MLB is not required to release managerial salary figures, not all salary data
24
could be found. To observe the relationship between managerial salary, efficiency, and
experience, and to get a sense of what MLB teams are basing managerial compensation from, I
estimate the following equation:
 =
+
 +
 +
 +
 +
 +
 +
 + (3)
As is typical in this type of analysis, I estimate equation 3 in terms of the natural log of salary
(Krautmen, Von Allmen, & Berri, 2009). It is important to note that while only salaries recorded
in the contract’s first year should be included in the output data (Krautmen et al. 2009), I include
salaries regardless of the contract’s year due to the limited availability of data.
8
Similar to player
contracts, managerial salaries are guaranteed in spite of whether the manager is still employed by
the team.
9
A manager may be fired for a number of reasons, but firings are usually associated
with poor on-field performance. Similarly, teams are required to pay player contracts in full
whether the player gets injured, sees his performance levels decrease, or is released. Thus, only
the salary figure in the contract’s first year is included because it best-represents the player’s
value to the team. A salary figure from any subsequent year may not represent a player’s true
value because of the risk of injury, decrease in performance, etc. However, it may be appropriate
to include managerial salaries from all years because teams often fire managers despite the
8
For example, if a player signed a 2 year/ $20 million contract prior to the 2015 season, only the
$10 million made in 2015 would be included in the data. The $10 million earned in 2016 would
be omitted.
9
In 2016, the Miami Marlins are required to pay $1.4 million to former manager Dan Jennings.
Jennings is currently employed with the Washington Nationals as a special advisor to the
General Manager (Axisa, 2016).
25
guaranteed contracts (Huzzard, 2015). Ryne Sandberg with the Phillies and Rick Renteria with
the Cubs both signed three-year guaranteed contracts prior to the 2014 season. Neither is still
managing. Moreover, the Rays signed then-rookie manager Kevin Cash to a five-year guaranteed
contract prior to the 2015 season. The contract is specifically structured to limit the amount of
money lost in the event that Cash is fired (Gaines, 2015). Whether the manager is still employed
should be a telling sign of if his salary in an indication of his true value.
Table 5: OLS Estimates of Equation 3
(1)
VARIABLES
OLS
eff
1.171
(1.379)
yearsexp
0.0438***
(0.0108)
manwpct
4.792***
(1.753)
award
0.177
(0.125)
MLBplayer
0.301
(0.193)
NL
-0.392***
(0.139)
change
0.00556
(0.164)
Constant
-3.450***
(1.196)
Observations
70
R-squared
0.640
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
OLS estimates are shown in Table 5. Results were similar to Smart et al. (2008). There is
not a significant correlation between salary and efficiency. In other words, MLB teams do not
26
appear to pay managers based on their efficiency. However, teams do reward managers with
higher salaries based on their managing experience. Both yearexp and manwpct were statistically
significant. Each additional year of managerial experience increases salary by 4.4%, on average.
Furthermore, the National League dummy variable was also significant. American League
managers, on average, have a higher salary than National League managers.
10
While my salary
data is limited, there appears to be an inefficiency in the MLB manager labor market as teams are
paying their managers based on experience, but not efficiency.
For example, it is almost common knowledge amongst baseball writers, analysts, and
players that Joe Maddon is a superior manager (Mooney, 2015; Crasnick, 2015). Many believe
his eccentric behavior and in-game adjustments enhance his team’s chances of winning. His
salary reflects this consensus too— the Cubs signed him to a 5 year/ $25 million contract in
2015, making him the highest-paid manager in MLB. However, according to my estimates,
Maddon ranks as a slightly below-average manager in terms of efficiency. His average efficiency
score of 0.938 from 2008-2015 is below the sample mean on 0.943. On the other hand, Maddon
does have nearly 10 years of managing experience, which can partly explain why the Cubs
rewarded him with a high salary. In a similar fashion, Dusty Baker was hired as the new
Washington Nationals manager in 2016. Despite 20 years of managerial experience, Baker has
only one National League Pennant.
This market inefficiency has also resulted in the firing of high-quality managers. Trey
Hillman began his managerial career in 2008 with the Kansas City Royals. He was fired shortly
into the 2010 season after two-plus years with losing records and now is the bench coach for the
10
After carefully examining current research journals and online publications, I find no sufficient
evidence that supports this claim. It may, simply, be a result of sampling error.
27
Houston Astros. However, Hillman posted an efficiency score of 0.981 in 2009— good for the
highest single-season rating in my sample. The unfortunate truth is that, when teams lose, it is
often the managers that are let-go and not the players. A primary reason could be that player
contracts are guaranteed while managerial contracts are not. General Managers are under
pressure to do something when the team underperforms, and it is often the case that the manager
is the first one to go.
V. Opportunities for Further Research
While it is not within the reach of this paper, I envision that further research will include
a more in-depth analysis of managerial compensation. How much should teams pay their
managers and on what basis should they base their valuation from? Due to the fragmented nature
of teams publically disclosing managerial salaries, my data is simply too brief to perform such an
analysis. The structure of managerial contracts also adds to the difficulty. My data includes
salary figures regardless of the year-in-contract. Krautmen et al. (2009) explain that, when using
performance variables to predict a player’s true value, it is best to only the use salary data from
the initial year of the contract. While I have provided information for why it may be appropriate
to use all of a contract’s yearly salaries when examining the value of the manager, there is sill
debate on which method is best. In any case, I have provided evidence of an inefficiency in the
market for MLB managers. Teams are basing their managerial compensation off of experience
but not efficiency.
It is also beyond the scope of this paper to analyze managerial decisions at the in-game
level. The lack of public information on the impact of specific decisions (i.e. pinch-hitting or
pitcher substitutions) limits the extent to which managerial performance can be measured.
28
Though, some informal studies have looked at how Win Probability Added (WPA) can be used
to analyze a manager’s bullpen use (Vargovick, 2015). In essence, WPA measures a specific
events’ impact on the likelihood that a team will win.
11
It can be seen that analyzing the WPA of
each in-game decision that a manger makes over the course of game and over the course of a
season would help understand managerial effectiveness. However, due to time constraints and
the exhausting nature of analyzing 162 games for 30 teams over numerous seasons, WPA
analysis is beyond the scope of this paper.
As suggested by Smart et al. (2008), further research of the managerial effect should
broaden the term “management” to include the general managers, scouts, analysts, and player
developers. So much of what goes into fielding a baseball team occurs behind the scenes— in the
offices of these baseball operations personnel.
12
While recent advances in statistical analysis
allow for teams to measure how many wins a player is worth and how much money they are
worth to their teams, there have been few attempts to try to apply this same logic to baseball
operations employees. Lewis Pollis, a 2014 Brown University graduate and current Research and
Development Analyst for the Philadelphia Phillies, wrote his Senior Thesis in Economics on this
subject. By analyzing player transactions (i.e. trades, signings, releases, drafts), Pollis (2014)
finds a significant difference in the player-investing ability of general managers. A general
manager can be worth eight wins during the course of a season, which equates to a roughly $50
million market value. Considering that the highest paid general manager in 2014 earned $4
million, there is a vast inefficiency in the market for GMs. The next step in this process is to
11
For example, suppose a batter on a team with a 25% chance of winning strikes out with the
bases loaded in the 7
th
inning. Following the strikeout, the teams chance of winning drops to
19%. The win probability added on this particular play was -6%.
12
Baseball Operations departments are usually led by the General Manager. They typically
consist of scouting, player development, analytics, and minor league operations sub-departments.
29
determine how much baseball operations employees are worth to their teams and how much a
team should spend on front-office candidates.
VI. Conclusion
In this paper, I have explored managerial efficiency across Major League Baseball. In
order to do so, OLS regression analysis was performed to determine the effect of managerial
characteristics on team winning percentage. This paper uses managerial characteristics that are
consistent with previous literature (Smart et al., 2008; Kahane, 2005; Singell, 1993; Kahn, 1993).
Similar to (Lewis et al., 2009; Smart et al., 2008; Ruggiero et al., 1996; Singell, 1993; Kahn,
1993; Porter & Scully, 1982), player statistics are included in the regression to control for
varying player talent level across teams. Other studies (Volz, 2009; Kahane, 2005) use team
payroll instead of player statistics to control for player talent. As noted above, player statistics
are a superior control variable because they more accurately represent a team’s talent level.
Especially in MLB, team payroll may not accurately represent a team’s true value because
players (especially rookies and arbitration-eligible players) are often paid far below their worth.
This paper differentiates itself from previous literature in its choice of player control
variables. Previous studies have used a variety of statistics including batting average, slugging
percentage, total offensive resources, earned-run average, strikeout-to-walk ratio, fielding
percentage, etc. However, as presented earlier, the influx of sabermetrics in MLB has created a
new benchmark for objectively measuring player performance. The WAR statistics combine all
aspects of player performance (hitting, fielding, base running, and pitching) into two values that
are easily comparable across positions.
30
In addition, this paper uses Stochastic Frontier Analysis to better understand the impact
of managers on team performance. Frontier analysis allows for the measurement of managerial
efficiencyor how efficient managers are at turning player talent (measured by team WAR)
into wins. Efficiency is obtained by dividing a team’s actual winning percentage by their
expected winning percentage, based on the frontier analysis. Managerial efficiency scores were
provided for managers with at least four years of experience in the sample. A t-test analysis was
then performed on the top and bottom performing managers to test for statistical difference.
Finally, I investigated the relationship between managerial compensation and performance.
These aforementioned analyses found a number of statistically significant correlations.
As expected, greater pitching and position-player talent increases the likelihood of winning.
Managers with more experience tend to win more while teams that have mid-season managerial
changes tend to win less. National League managers are, on average, less efficient than
American League managers because they are forced to make more in-game adjustments.
Inconsistent with Singell (1993) and Smart et al. (2008), my analysis did not suggest that MLB
playing experience nor manager-of-the-year awards have a positive impact on managerial
performance.
In this paper, I believe that I have provided quantitative information that major league
teams can use to evaluate the performance of their managers. Furthermore, I have provided
evidence of an inefficiency in the market for MLB managersteams are committing millions of
dollars to managers based on experience, but not efficiency. While managerial investments are
far below the amount of money spent on players, they are investments nonetheless, so teams
should have concrete information for which they can base their investment from.
31
References
Aigner, D., Lovell, C. A. K., & Schmidt, P. (1977). Formulation and Estimation of Stochastic
Frontier Production Function Models. Journal of Econometrics, 6(1), 21–37.
Axisa, M. (2015). Report: Marlins file grievance over Dan Jennings’ salary with Nationals.
Retrieved May 4, 2016, from http://www.cbssports.com/video/player/embed
Baseball Managers and Managerial Leaders. (n.d.). Retrieved April 5, 2016, from
http://www.baseball-reference.com/managers/
Castrovince, A. (n.d.). Wedge named AL’s top manager. Retrieved April 5, 2016, from
http://m.mlb.com/news/article/2300277/
Gains, C. (2015). The Rays gave the youngest manager in MLB an unusual contract and it was a
brilliant move. Retrieved May 4, 2016, from http://www.businessinsider.com/kevin-cash-
contract-tampa-bay-rays-2015-3
Cot’s Baseball Contracts. (n.d.). Retrieved from
http://www.baseballprospectus.com/compensation/cots/
Crasnick, J. (2015). Who is baseball’s best manager? Retrieved May 2, 2016, from
http://espn.go.com/mlb/story/_/id/13186480
Fizel, J. L., & D’itri, M. (1996). Estimating Managerial Efficiency: The Case of College
Basketball Coaches. Journal of Sport Management, 10(4), 435–445.
Horowitz, I. (1994). Pythagoras, Tommy Lasorda, and Me: On Evaluating Baseball Managers.
Social Science Quarterly (University of Texas Press), 75(1), 187–194.
Huzzard, D. (2015). The Industry Standard on Managers Contracts. Retrieved May 4, 2016, from
http://www.scout.com/mlb/nationals/story/1607331-the-industry-standard-on-managers-
32
contracts
Kahane, L. H. (2005). Production Efficiency and Discriminatory Hiring Practices in the National
Hockey League: A Stochastic Frontier Approach. Review of Industrial Organization,
27(1), 47–71. http://doi.org/http://link.springer.com/journal/volumesAndIssues/11151
Kahn, L. M. (1993). Managerial quality, team success, and individual player performance in
major league baseball. Industrial & Labor Relations Review, 46(3), 531.
Krautmann, A. C., von Allmen, P., & Berri, D. (2009). The Underpayment of Restricted Players
in North American Sports Leagues. International Journal of Sport Finance, 4(3), 161–
175.
Lewis, H. F., Lock, K. A., & Sexton, T. R. (2009). Organizational capability, efficiency, and
effectiveness in Major League Baseball: 1901–2002. European Journal of Operational
Research, 197(2), 731–740. http://doi.org/10.1016/j.ejor.2008.07.002
Lewis, M. (2003). Moneyball: The Art of Winning an Unfair Game. New York: W.W. Norton &
Company.
Meeusen, W., & Van Den Broeck, J. (1977). Efficiency Estimation from Cobb-Douglas
Production Functions with Composed Error. International Economic Review, 18(2), 435.
MLB Manager Contracts. (n.d.). Retrieved from http://www.otherleague.com/contracts/mlb-
manager-contracts-salaries/
Mooney, P. (2015). Joe Maddon is perfect manager at perfect time for Cubs. Retrieved May 2,
2016, from http://www.csnchicago.com/chicago-cubs/joe-maddon-perfect-manager-
perfect-time-cubs
Pollis, L. (2014, April). If You Build It: Rethinking the Market for Major League Baseball Front
Office Personel. Retrieved from http://sabr.org/sites/default/files/Pollis-Lewis-
33
If_You_Build_It-2014-04.pdf
Porter, P. K., & Scully, G. W. (1982). Measuring Managerial Efficiency: The Case of Baseball.
Southern Economic Journal, 48(3), 642.
Pythagorean Win-Loss | FanGraphs Sabermetrics Library. (n.d.). Retrieved from
http://www.fangraphs.com/library/principles/expected-wins-and-losses/
Ruggiero, J., & Hadley, L. (1997). A Note on the Pythagorean Theorem of Baseball Production.
Managerial & Decision Economics, 18(4), 335–342.
Ruggiero, J., Hadley, L., & Gustafson, E. (1996). Technical Efficiency in Major League
Baseball. In J. Fizel, E. Gustafson, & L. Hadley (Eds.), Baseball economics: Current
research (pp. 191–200). Westport, Conn. and London:
Salary Arbitration | FanGraphs Sabermetrics Library. (n.d.). Retrieved from
http://www.fangraphs.com/library/business/mlb-salary-arbitration-rules/
Scully, G. W. (1994). Managerial Efficiency and Survivability in Professional Team Sports.
Managerial & Decision Economics, 15(5), 403–411.
Singell, L. D., Jr. (1993). Managers, Specific Human Capital, and Firm Productivity in Major
League Baseball. Atlantic Economic Journal, 21(3), 47–59.
http://doi.org/http://link.springer.com/journal/volumesAndIssues/11293
Smart, D. l., & Wolfe, R. a. (2003). The contribution of leadership and human resources to
organizational success: an empirical assessment of performance in major league baseball.
European Sport Management Quarterly, 3(3), 165–188.
Smart, D., Winfree, J., & Wolfe, R. (2008). Major League Baseball Managers: Do They Matter?
Journal of Sport Management, 22(3), 303–321.
Vargovick, D. (2015, June 13). How is Brad Ausmus managing the Tigers’ bullpen? Retrieved
34
April 7, 2016, from http://www.blessyouboys.com/2015/6/13/8771935/detroit-tigers-
ausmus-bullpen-evaluation
Volz, B. (2009). Minority Status and Managerial Survival in Major League Baseball. Journal of
Sports Economics, 10(5), 522–542. http://doi.org/http://jse.sagepub.com/content/by/year
What is WAR? | FanGraphs Sabermetrics Library. (n.d.). Retrieved from
http://www.fangraphs.com/library/misc/war/
Young Han Lee. (2009). Evaluating Management Efficiency of Korean Professional Teams
Using Data Envelopment Analysis (DEA). International Journal of Applied Sports
Sciences, 21(2), 93–112.