AVR Microcontrollers
AVR Instruction Set Manual
OTHER
Instruction Set Nomenclature
Status Register (SREG)
SREG Status Register
C Carry Flag
Z Zero Flag
N Negative Flag
V Two’s complement overflow indicator
S N V, for signed tests
H Half Carry Flag
T Transfer bit used by BLD and BST instructions
I Global Interrupt Enable/Disable Flag
Registers and Operands
Rd: Destination (and source) register in the Register File
Rr: Source register in the Register File
R: Result after instruction is executed
K: Constant data
k: Constant address
b: Bit in the Register File or I/O Register (3-bit)
s: Bit in the Status Register (3-bit)
X,Y,Z: Indirect Address Register (X=R27:R26, Y=R29:R28, and
Z=R31:R30)
A: I/O location address
q: Displacement for direct addressing (6-bit)
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
Table of Contents
Instruction Set Nomenclature.......................................................................................... 1
1. I/O Registers............................................................................................................13
1.1. RAMPX, RAMPY, and RAMPZ...................................................................................................13
1.2. RAMPD.......................................................................................................................................13
1.3. EIND...........................................................................................................................................13
1.4. Stack...........................................................................................................................................13
1.5. Flags...........................................................................................................................................13
2. The Program and Data Addressing Modes............................................................. 14
2.1. Register Direct, Single Register Rd............................................................................................14
2.2. Register Direct - Two Registers, Rd and Rr............................................................................... 15
2.3. I/O Direct.................................................................................................................................... 15
2.4. Data Direct..................................................................................................................................16
2.5. Data Indirect with Displacement.................................................................................................16
2.6. Data Indirect............................................................................................................................... 17
2.7. Data Indirect with Pre-decrement...............................................................................................17
2.8. Data Indirect with Post-increment...............................................................................................18
2.9. Program Memory Constant Addressing using the LPM, ELPM, and SPM Instructions............. 18
2.10. Program Memory with Post-increment using the LPM Z+ and ELPM Z+ Instruction................. 19
2.11. Direct Program Addressing, JMP and CALL.............................................................................. 19
2.12. Indirect Program Addressing, IJMP and ICALL..........................................................................20
2.13. Relative Program Addressing, RJMP and RCALL..................................................................... 20
3. Conditional Branch Summary..................................................................................21
4. Instruction Set Summary......................................................................................... 22
5. ADC – Add with Carry..............................................................................................30
5.1. Description..................................................................................................................................30
5.2. Status Register (SREG) and Boolean Formula..........................................................................30
6. ADD – Add without Carry.........................................................................................32
6.1. Description..................................................................................................................................32
6.2. Status Register (SREG) and Boolean Formula..........................................................................32
7. ADIW – Add Immediate to Word..............................................................................33
7.1. Description..................................................................................................................................33
7.2. Status Register (SREG) and Boolean Formula..........................................................................33
8. AND – Logical AND................................................................................................. 35
8.1. Description..................................................................................................................................35
8.2. Status Register (SREG) and Boolean Formula..........................................................................35
9. ANDI – Logical AND with Immediate.......................................................................36
9.1. Description..................................................................................................................................36
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
2
9.2. Status Register (SREG) and Boolean Formula..........................................................................36
10. ASR – Arithmetic Shift Right....................................................................................37
10.1. Description..................................................................................................................................37
10.2. Status Register (SREG) and Boolean Formula..........................................................................37
11. BCLR – Bit Clear in SREG...................................................................................... 38
11.1. Description..................................................................................................................................38
11.2. Status Register (SREG) and Boolean Formula..........................................................................38
12. BLD – Bit Load from the T Flag in SREG to a Bit in Register..................................39
12.1. Description..................................................................................................................................39
12.2. Status Register (SREG) and Boolean Formula..........................................................................39
13. BRBC – Branch if Bit in SREG is Cleared............................................................... 40
13.1. Description..................................................................................................................................40
13.2. Status Register (SREG) and Boolean Formula..........................................................................40
14. BRBS – Branch if Bit in SREG is Set...................................................................... 41
14.1. Description..................................................................................................................................41
14.2. Status Register (SREG) and Boolean Formula..........................................................................41
15. BRCC – Branch if Carry Cleared.............................................................................42
15.1. Description..................................................................................................................................42
15.2. Status Register (SREG) and Boolean Formula..........................................................................42
16. BRCS – Branch if Carry Set.................................................................................... 43
16.1. Description..................................................................................................................................43
16.2. Status Register (SREG) and Boolean Formula..........................................................................43
17. BREAK – Break....................................................................................................... 44
17.1. Description..................................................................................................................................44
17.2. Status Register (SREG) and Boolean Formula..........................................................................44
18. BREQ – Branch if Equal.......................................................................................... 45
18.1. Description..................................................................................................................................45
18.2. Status Register (SREG) and Boolean Formula..........................................................................45
19. BRGE – Branch if Greater or Equal (Signed).......................................................... 46
19.1. Description..................................................................................................................................46
19.2. Status Register (SREG) and Boolean Formula..........................................................................46
20. BRHC – Branch if Half Carry Flag is Cleared..........................................................47
20.1. Description..................................................................................................................................47
20.2. Status Register (SREG) and Boolean Formula..........................................................................47
21. BRHS – Branch if Half Carry Flag is Set................................................................. 48
21.1. Description..................................................................................................................................48
21.2. Status Register (SREG) and Boolean Formula..........................................................................48
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
3
22. BRID – Branch if Global Interrupt is Disabled......................................................... 49
22.1. Description..................................................................................................................................49
22.2. Status Register (SREG) and Boolean Formula..........................................................................49
23. BRIE – Branch if Global Interrupt is Enabled.......................................................... 50
23.1. Description..................................................................................................................................50
23.2. Status Register (SREG) and Boolean Formula..........................................................................50
24. BRLO – Branch if Lower (Unsigned)....................................................................... 51
24.1. Description..................................................................................................................................51
24.2. Status Register (SREG) and Boolean Formula..........................................................................51
25. BRLT – Branch if Less Than (Signed)..................................................................... 52
25.1. Description..................................................................................................................................52
25.2. Status Register (SREG) and Boolean Formula..........................................................................52
26. BRMI – Branch if Minus...........................................................................................53
26.1. Description..................................................................................................................................53
26.2. Status Register (SREG) and Boolean Formula..........................................................................53
27. BRNE – Branch if Not Equal....................................................................................54
27.1. Description..................................................................................................................................54
27.2. Status Register (SREG) and Boolean Formula..........................................................................54
28. BRPL – Branch if Plus............................................................................................. 55
28.1. Description..................................................................................................................................55
28.2. Status Register (SREG) and Boolean Formula..........................................................................55
29. BRSH – Branch if Same or Higher (Unsigned)........................................................56
29.1. Description..................................................................................................................................56
29.2. Status Register (SREG) and Boolean Formula..........................................................................56
30. BRTC – Branch if the T Flag is Cleared.................................................................. 57
30.1. Description..................................................................................................................................57
30.2. Status Register (SREG) and Boolean Formula..........................................................................57
31. BRTS – Branch if the T Flag is Set..........................................................................58
31.1. Description..................................................................................................................................58
31.2. Status Register (SREG) and Boolean Formula..........................................................................58
32. BRVC – Branch if Overflow Cleared........................................................................59
32.1. Description..................................................................................................................................59
32.2. Status Register (SREG) and Boolean Formula..........................................................................59
33. BRVS – Branch if Overflow Set............................................................................... 60
33.1. Description..................................................................................................................................60
33.2. Status Register (SREG) and Boolean Formula..........................................................................60
34. BSET – Bit Set in SREG..........................................................................................61
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
4
34.1. Description..................................................................................................................................61
34.2. Status Register (SREG) and Boolean Formula..........................................................................61
35. BST – Bit Store from Bit in Register to T Flag in SREG.......................................... 62
35.1. Description..................................................................................................................................62
35.2. Status Register (SREG) and Boolean Formula..........................................................................62
36. CALL – Long Call to a Subroutine........................................................................... 63
36.1. Description..................................................................................................................................63
36.2. Status Register (SREG) and Boolean Formula..........................................................................63
37. CBI – Clear Bit in I/O Register.................................................................................65
37.1. Description..................................................................................................................................65
37.2. Status Register (SREG) and Boolean Formula..........................................................................65
38. CBR – Clear Bits in Register................................................................................... 66
38.1. Description..................................................................................................................................66
38.2. Status Register (SREG) and Boolean Formula..........................................................................66
39. CLC – Clear Carry Flag........................................................................................... 67
39.1. Description..................................................................................................................................67
39.2. Status Register (SREG) and Boolean Formula..........................................................................67
40. CLH – Clear Half Carry Flag....................................................................................68
40.1. Description..................................................................................................................................68
40.2. Status Register (SREG) and Boolean Formula..........................................................................68
41. CLI – Clear Global Interrupt Flag.............................................................................69
41.1. Description..................................................................................................................................69
41.2. Status Register (SREG) and Boolean Formula..........................................................................69
42. CLN – Clear Negative Flag......................................................................................70
42.1. Description..................................................................................................................................70
42.2. Status Register (SREG) and Boolean Formula..........................................................................70
43. CLR – Clear Register.............................................................................................. 71
43.1. Description..................................................................................................................................71
43.2. Status Register (SREG) and Boolean Formula..........................................................................71
44. CLS – Clear Signed Flag.........................................................................................72
44.1. Description..................................................................................................................................72
44.2. Status Register (SREG) and Boolean Formula..........................................................................72
45. CLT – Clear T Flag.................................................................................................. 73
45.1. Description..................................................................................................................................73
45.2. Status Register (SREG) and Boolean Formula..........................................................................73
46. CLV – Clear Overflow Flag...................................................................................... 74
46.1. Description..................................................................................................................................74
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
5
46.2. Status Register (SREG) and Boolean Formula..........................................................................74
47. CLZ – Clear Zero Flag.............................................................................................75
47.1. Description..................................................................................................................................75
47.2. Status Register (SREG) and Boolean Formula..........................................................................75
48. COM – One’s Complement......................................................................................76
48.1. Description..................................................................................................................................76
48.2. Status Register (SREG) and Boolean Formula..........................................................................76
49. CP – Compare.........................................................................................................77
49.1. Description..................................................................................................................................77
49.2. Status Register (SREG) and Boolean Formula..........................................................................77
50. CPC – Compare with Carry..................................................................................... 79
50.1. Description..................................................................................................................................79
50.2. Status Register (SREG) and Boolean Formula..........................................................................79
51. CPI – Compare with Immediate...............................................................................81
51.1. Description..................................................................................................................................81
51.2. Status Register (SREG) and Boolean Formula..........................................................................81
52. CPSE – Compare Skip if Equal............................................................................... 83
52.1. Description..................................................................................................................................83
52.2. Status Register (SREG) and Boolean Formula..........................................................................83
53. DEC – Decrement................................................................................................... 84
53.1. Description..................................................................................................................................84
53.2. Status Register and Boolean Formula....................................................................................... 84
54. DES – Data Encryption Standard............................................................................ 86
54.1. Description..................................................................................................................................86
55. EICALL – Extended Indirect Call to Subroutine.......................................................87
55.1. Description..................................................................................................................................87
55.2. Status Register (SREG) and Boolean Formula..........................................................................87
56. EIJMP – Extended Indirect Jump............................................................................ 88
56.1. Description..................................................................................................................................88
56.2. Status Register (SREG) and Boolean Formula..........................................................................88
57. ELPM – Extended Load Program Memory..............................................................89
57.1. Description..................................................................................................................................89
57.2. Status Register (SREG) and Boolean Formula..........................................................................90
58. EOR – Exclusive OR............................................................................................... 91
58.1. Description..................................................................................................................................91
58.2. Status Register (SREG) and Boolean Formula..........................................................................91
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
6
59. FMUL – Fractional Multiply Unsigned......................................................................92
59.1. Description..................................................................................................................................92
59.2. Status Register (SREG) and Boolean Formula..........................................................................92
60. FMULS – Fractional Multiply Signed....................................................................... 94
60.1. Description..................................................................................................................................94
60.2. Status Register (SREG) and Boolean Formula..........................................................................94
61. FMULSU – Fractional Multiply Signed with Unsigned............................................. 96
61.1. Description..................................................................................................................................96
61.2. Status Register (SREG) and Boolean Formula..........................................................................96
62. ICALL – Indirect Call to Subroutine......................................................................... 98
62.1. Description..................................................................................................................................98
62.2. Status Register (SREG) and Boolean Formula..........................................................................98
63. IJMP – Indirect Jump...............................................................................................99
63.1. Description..................................................................................................................................99
63.2. Status Register (SREG) and Boolean Formula..........................................................................99
64. IN - Load an I/O Location to Register.................................................................... 100
64.1. Description................................................................................................................................100
64.2. Status Register (SREG) and Boolean Formula........................................................................100
65. INC – Increment.................................................................................................... 101
65.1. Description................................................................................................................................101
65.2. Status Register and Boolean Formula..................................................................................... 101
66. JMP – Jump...........................................................................................................103
66.1. Description................................................................................................................................103
66.2. Status Register (SREG) and Boolean Formula........................................................................103
67. LAC – Load and Clear........................................................................................... 104
67.1. Description................................................................................................................................104
67.2. Status Register (SREG) and Boolean Formula........................................................................104
68. LAS – Load and Set.............................................................................................. 105
68.1. Description................................................................................................................................105
68.2. Status Register (SREG) and Boolean Formula........................................................................105
69. LAT – Load and Toggle..........................................................................................106
69.1. Description................................................................................................................................106
69.2. Status Register (SREG) and Boolean Formula........................................................................106
70. LD – Load Indirect from Data Space to Register using Index X............................ 107
70.1. Description................................................................................................................................107
70.2. Status Register (SREG) and Boolean Formula........................................................................108
71. LD (LDD) – Load Indirect from Data Space to Register using Index Y................. 109
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
7
71.1. Description................................................................................................................................109
71.2. Status Register (SREG) and Boolean Formula........................................................................ 110
72. LD (LDD) – Load Indirect From Data Space to Register using Index Z.................112
72.1. Description................................................................................................................................112
72.2. Status Register (SREG) and Boolean Formula........................................................................ 113
73. LDI – Load Immediate............................................................................................115
73.1. Description................................................................................................................................115
73.2. Status Register (SREG) and Boolean Formula........................................................................ 115
74. LDS – Load Direct from Data Space......................................................................116
74.1. Description................................................................................................................................116
74.2. Status Register (SREG) and Boolean Formula........................................................................ 116
75. LDS (16-bit) – Load Direct from Data Space......................................................... 117
75.1. Description................................................................................................................................117
75.2. Status Register (SREG) and Boolean Formula........................................................................ 117
76. LPM – Load Program Memory...............................................................................118
76.1. Description................................................................................................................................118
76.2. Status Register (SREG) and Boolean Formula........................................................................ 118
77. LSL – Logical Shift Left..........................................................................................120
77.1. Description................................................................................................................................120
77.2. Status Register (SREG) and Boolean Formula........................................................................120
78. LSR – Logical Shift Right.......................................................................................122
78.1. Description................................................................................................................................122
78.2. Status Register (SREG) and Boolean Formula........................................................................122
79. MOV – Copy Register............................................................................................123
79.1. Description................................................................................................................................123
79.2. Status Register (SREG) and Boolean Formula........................................................................123
80. MOVW – Copy Register Word...............................................................................124
80.1. Description................................................................................................................................124
80.2. Status Register (SREG) and Boolean Formula........................................................................124
81. MUL – Multiply Unsigned.......................................................................................125
81.1. Description................................................................................................................................125
81.2. Status Register (SREG) and Boolean Formula........................................................................125
82. MULS – Multiply Signed........................................................................................ 126
82.1. Description................................................................................................................................126
82.2. Status Register (SREG) and Boolean Formula........................................................................126
83. MULSU – Multiply Signed with Unsigned.............................................................. 127
83.1. Description................................................................................................................................127
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
8
83.2. Status Register (SREG) and Boolean Formula........................................................................127
84. NEG – Two’s Complement.................................................................................... 129
84.1. Description................................................................................................................................129
84.2. Status Register (SREG) and Boolean Formula........................................................................129
85. NOP – No Operation............................................................................................. 131
85.1. Description................................................................................................................................131
85.2. Status Register (SREG) and Boolean Formula........................................................................131
86. OR – Logical OR................................................................................................... 132
86.1. Description................................................................................................................................132
86.2. Status Register (SREG) and Boolean Formula........................................................................132
87. ORI – Logical OR with Immediate......................................................................... 133
87.1. Description................................................................................................................................133
87.2. Status Register (SREG) and Boolean Formula........................................................................133
88. OUT – Store Register to I/O Location....................................................................134
88.1. Description................................................................................................................................134
88.2. Status Register (SREG) and Boolean Formula........................................................................134
89. POP – Pop Register from Stack............................................................................ 135
89.1. Description................................................................................................................................135
89.2. Status Register (SREG) and Boolean Formula........................................................................135
90. PUSH – Push Register on Stack........................................................................... 136
90.1. Description................................................................................................................................136
90.2. Status Register (SREG) and Boolean Formula........................................................................136
91. RCALL – Relative Call to Subroutine.................................................................... 137
91.1. Description................................................................................................................................137
91.2. Status Register (SREG) and Boolean Formula........................................................................137
92. RET – Return from Subroutine.............................................................................. 139
92.1. Description................................................................................................................................139
92.2. Status Register (SREG) and Boolean Formula........................................................................139
93. RETI – Return from Interrupt................................................................................. 140
93.1. Description................................................................................................................................140
93.2. Status Register (SREG) and Boolean Formula........................................................................140
94. RJMP – Relative Jump.......................................................................................... 142
94.1. Description................................................................................................................................142
94.2. Status Register (SREG) and Boolean Formula........................................................................142
95. ROL – Rotate Left trough Carry.............................................................................143
95.1. Description................................................................................................................................143
95.2. Status Register (SREG) and Boolean Formula........................................................................143
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
9
96. ROR – Rotate Right through Carry........................................................................145
96.1. Description................................................................................................................................145
96.2. Status Register (SREG) and Boolean Formula........................................................................145
97. SBC – Subtract with Carry.....................................................................................147
97.1. Description................................................................................................................................147
97.2. Status Register (SREG) and Boolean Formula........................................................................147
98. SBCI – Subtract Immediate with Carry SBI – Set Bit in I/O Register.................... 149
98.1. Description................................................................................................................................149
98.2. Status Register (SREG) and Boolean Formula........................................................................149
99. SBI – Set Bit in I/O Register.................................................................................. 151
99.1. Description................................................................................................................................151
99.2. Status Register (SREG) and Boolean Formula........................................................................151
100. SBIC – Skip if Bit in I/O Register is Cleared........................................................ 152
100.1. Description............................................................................................................................... 152
100.2. Status Register (SREG) and Boolean Formula........................................................................152
101. SBIS – Skip if Bit in I/O Register is Set............................................................... 153
101.1. Description............................................................................................................................... 153
101.2. Status Register (SREG) and Boolean Formula........................................................................153
102. SBIW – Subtract Immediate from Word...............................................................154
102.1. Description............................................................................................................................... 154
102.2. Status Register (SREG) and Boolean Formula........................................................................154
103. SBR – Set Bits in Register...................................................................................156
103.1. Description............................................................................................................................... 156
103.2. Status Register (SREG) and Boolean Formula........................................................................156
104. SBRC – Skip if Bit in Register is Cleared............................................................ 157
104.1. Description............................................................................................................................... 157
104.2. Status Register (SREG) and Boolean Formula........................................................................157
105. SBRS – Skip if Bit in Register is Set....................................................................158
105.1. Description............................................................................................................................... 158
105.2. Status Register (SREG) and Boolean Formula........................................................................158
106. SEC – Set Carry Flag.......................................................................................... 159
106.1. Description............................................................................................................................... 159
106.2. Status Register (SREG) and Boolean Formula........................................................................159
107. SEH – Set Half Carry Flag...................................................................................160
107.1. Description............................................................................................................................... 160
107.2. Status Register (SREG) and Boolean Formula........................................................................160
108. SEI – Set Global Interrupt Flag............................................................................161
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
10
108.1. Description............................................................................................................................... 161
108.2. Status Register (SREG) and Boolean Formula........................................................................161
109. SEN – Set Negative Flag.....................................................................................162
109.1. Description............................................................................................................................... 162
109.2. Status Register (SREG) and Boolean Formula........................................................................162
110. SER – Set all Bits in Register.............................................................................. 163
110.1. Description................................................................................................................................163
110.2. Status Register (SREG) and Boolean Formula........................................................................163
111. SES – Set Signed Flag........................................................................................ 164
111.1. Description................................................................................................................................164
111.2. Status Register (SREG) and Boolean Formula........................................................................164
112. SET – Set T Flag................................................................................................. 165
112.1. Description................................................................................................................................165
112.2. Status Register (SREG) and Boolean Formula........................................................................165
113. SEV – Set Overflow Flag..................................................................................... 166
113.1. Description................................................................................................................................166
113.2. Status Register (SREG) and Boolean Formula........................................................................166
114. SEZ – Set Zero Flag............................................................................................ 167
114.1. Description................................................................................................................................167
114.2. Status Register (SREG) and Boolean Formula........................................................................167
115. SLEEP................................................................................................................. 168
115.1. Description................................................................................................................................168
115.2. Status Register (SREG) and Boolean Formula........................................................................168
116. SPM – Store Program Memory............................................................................169
116.1. Description................................................................................................................................169
116.2. Status Register (SREG) and Boolean Formula........................................................................169
117. SPM #2 – Store Program Memory.......................................................................171
117.1. Description................................................................................................................................171
117.2. Status Register (SREG) and Boolean Formula........................................................................171
118. ST – Store Indirect From Register to Data Space using Index X.........................173
118.1. Description................................................................................................................................173
118.2. Status Register (SREG) and Boolean Formula........................................................................174
119. ST (STD) – Store Indirect From Register to Data Space using Index Y..............175
119.1. Description................................................................................................................................175
119.2. Status Register (SREG) and Boolean Formula........................................................................176
120. ST (STD) – Store Indirect From Register to Data Space using Index Z..............177
120.1. Description............................................................................................................................... 177
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
11
120.2. Status Register (SREG) and Boolean Formula........................................................................178
121. STS – Store Direct to Data Space.......................................................................179
121.1. Description............................................................................................................................... 179
121.2. Status Register (SREG) and Boolean Formula........................................................................179
122. STS (16-bit) – Store Direct to Data Space.......................................................... 180
122.1. Description............................................................................................................................... 180
122.2. Status Register (SREG) and Boolean Formula........................................................................180
123. SUB – Subtract Without Carry.............................................................................181
123.1. Description............................................................................................................................... 181
123.2. Status Register and Boolean Formula..................................................................................... 181
124. SUBI – Subtract Immediate................................................................................. 183
124.1. Description............................................................................................................................... 183
124.2. Status Register and Boolean Formula..................................................................................... 183
125. SWAP – Swap Nibbles........................................................................................ 185
125.1. Description............................................................................................................................... 185
125.2. Status Register (SREG) and Boolean Formula........................................................................185
126. TST – Test for Zero or Minus...............................................................................186
126.1. Description............................................................................................................................... 186
126.2. Status Register (SREG) and Boolean Formula........................................................................186
127. WDR – Watchdog Reset......................................................................................187
127.1. Description............................................................................................................................... 187
127.2. Status Register (SREG) and Boolean Formula........................................................................187
128. XCH – Exchange................................................................................................. 188
128.1. Description............................................................................................................................... 188
128.2. Status Register (SREG) and Boolean Formula........................................................................188
129. Datasheet Revision History................................................................................. 189
129.1. Rev.0856L - 11/2016................................................................................................................ 189
129.2. Rev.0856K - 04/2016................................................................................................................189
129.3. Rev.0856J - 07/2014................................................................................................................ 189
129.4. Rev.0856I – 07/2010................................................................................................................ 189
129.5. Rev.0856H – 04/2009...............................................................................................................189
129.6. Rev.0856G – 07/2008.............................................................................................................. 190
129.7. Rev.0856F – 05/2008...............................................................................................................190
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
12
1. I/O Registers
1.1. RAMPX, RAMPY, and RAMPZ
Registers concatenated with the X-, Y-, and Z-registers enabling indirect addressing of the whole data
space on MCUs with more than 64KB data space, and constant data fetch on MCUs with more than
64KB program space.
1.2. RAMPD
Register concatenated with the Z-register enabling direct addressing of the whole data space on MCUs
with more than 64KB data space.
1.3. EIND
Register concatenated with the Z-register enabling indirect jump and call to the whole program space on
MCUs with more than 64K words (128KB) program space.
1.4. Stack
STACK Stack for return address and pushed registers
SP Stack Pointer to STACK
1.5. Flags
Flag affected by instruction
0 Flag cleared by instruction
1 Flag set by instruction
- Flag not affected by instruction
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
13
2. The Program and Data Addressing Modes
The AVR
®
Enhanced RISC microcontroller supports powerful and efficient addressing modes for access
to the Program memory (Flash) and Data memory (SRAM, Register file, I/O Memory, and Extended I/O
Memory). This chapter describes the various addressing modes supported by the AVR architecture. In the
following figures, OP means the operation code part of the instruction word. To simplify, not all figures
show the exact location of the addressing bits. To generalize, the abstract terms RAMEND and
FLASHEND have been used to represent the highest location in data and program space, respectively.
Note:  Not all addressing modes are present in all devices. Refer to the device specific instruction
summary.
2.1. Register Direct, Single Register Rd
Figure 2-1. Direct Single Register Addressing
The operand is contained in register d (Rd).
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
14
2.2. Register Direct - Two Registers, Rd and Rr
Figure 2-2. Direct Register Addressing, Two Registers
Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd).
2.3. I/O Direct
Figure 2-3. I/O Direct Addressing
Operand address is contained in six bits of the instruction word. n is the destination or source register
address.
Note:  Some complex AVR Microcontrollers have more peripheral units than can be supported within the
64 locations reserved in the opcode for I/O direct addressing. The extended I/O memory from address 64
to 255 can only be reached by data addressing, not I/O addressing.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
15
2.4. Data Direct
Figure 2-4. Direct Data Addressing
A 16-bit Data Address is contained in the 16 LSBs of a two-word instruction. Rd/Rr specify the destination
or source register.
2.5. Data Indirect with Displacement
Figure 2-5. Data Indirect with Displacement
Operand address is the result of the Y- or Z-register contents added to the address contained in six bits of
the instruction word. Rd/Rr specify the destination or source register.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
16
2.6. Data Indirect
Figure 2-6. Data Indirect Addressing
Operand address is the contents of the X-, Y-, or the Z-register. In AVR devices without SRAM, Data
Indirect Addressing is called Register Indirect Addressing. Register Indirect Addressing is a subset of
Data Indirect Addressing since the data space form 0 to 31 is the Register File.
2.7. Data Indirect with Pre-decrement
Figure 2-7. Data Indirect Addressing with Pre-decrement
The X,- Y-, or the Z-register is decremented before the operation. Operand address is the decremented
contents of the X-, Y-, or the Z-register.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
17
2.8. Data Indirect with Post-increment
Figure 2-8. Data Indirect Addressing with Post-increment
The X-, Y-, or the Z-register is incremented after the operation. Operand address is the content of the X-,
Y-, or the Z-register prior to incrementing.
2.9. Program Memory Constant Addressing using the LPM, ELPM, and SPM
Instructions
Figure 2-9. Program Memory Constant Addressing
Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. For
LPM, the LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1). For SPM, the LSB should
be cleared. If ELPM is used, the RAMPZ Register is used to extend the Z-register.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
18
2.10. Program Memory with Post-increment using the LPM Z+ and ELPM Z+ Instruction
Figure 2-10. Program Memory Addressing with Post-increment
Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. The
LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1). If ELPM Z+ is used, the RAMPZ
Register is used to extend the Z-register.
2.11. Direct Program Addressing, JMP and CALL
Figure 2-11. Direct Program Memory Addressing
Program execution continues at the address immediate in the instruction word.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
19
2.12. Indirect Program Addressing, IJMP and ICALL
Figure 2-12. Indirect Program Memory Addressing
Program execution continues at address contained by the Z-register (i.e., the PC is loaded with the
contents of the Z-register).
2.13. Relative Program Addressing, RJMP and RCALL
Figure 2-13. Relative Program Memory Addressing
Program execution continues at address PC + k + 1. The relative address k is from -2048 to 2047.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
20
3. Conditional Branch Summary
Test Boolean Mnemonic
Complementar
y Boolean Mnemonic Comment
Rd > Rr Z•(N V) = 0 BRLT
(1)
Rd ≤ Rr Z+(N V) =
1
BRGE* Signed
Rd ≥ Rr (N V) = 0 BRGE Rd < Rr (N V) = 1 BRLT Signed
Rd = Rr Z = 1 BREQ Rd ≠ Rr Z = 0 BRNE Signed
Rd ≤ Rr Z+(N V) = 1 BRGE
(1)
Rd > Rr Z•(N V) = 0 BRLT* Signed
Rd < Rr (N V) = 1 BRLT Rd ≥ Rr (N V) = 0 BRGE Signed
Rd > Rr C + Z = 0 BRLO
(1)
Rd ≤ Rr C + Z = 1 BRSH* Unsigned
Rd ≥ Rr C = 0 BRSH/
BRCC
Rd < Rr C = 1 BRLO/BRCS Unsigned
Rd = Rr Z = 1 BREQ Rd ≠ Rr Z = 0 BRNE Unsigned
Rd ≤ Rr C + Z = 1 BRSH
(1)
Rd > Rr C + Z = 0 BRLO* Unsigned
Rd < Rr C = 1 BRLO/BRCS Rd ≥ Rr C = 0 BRSH/BRCC Unsigned
Carry C = 1 BRCS No carry C = 0 BRCC Simple
Negative N = 1 BRMI Positive N = 0 BRPL Simple
Overflow V = 1 BRVS No overflow V = 0 BRVC Simple
Zero Z = 1 BREQ Not zero Z = 0 BRNE Simple
Note:  Interchange Rd and Rr in the operation before the test, i.e., CP Rd,Rr → CP Rr,Rd.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
21
4. Instruction Set Summary
Several updates of the AVR CPU during its lifetime has resulted in different flavors of the instruction set,
especially for the timing of the instructions. Machine code level of compatibility is intact for all CPU
versions with a very few exceptions related to the Reduced Core (AVRrc), though not all instructions are
included in the instruction set for all devices. The table below contains the major versions of the AVR 8-bit
CPUs. In addition to the different versions, there are differences dependent of the size of the device
memory map. Typically these differences are handled by a C/EC++ compiler, but users that are porting
code should be aware that the code execution can vary slightly in number of clock cycles.
Table 4-1. Versions of AVR 8-bit CPU
Name Device
Series
Description
AVR AT90 Original instruction set from 1995.
AVRe megaAVR
®
Multiply (xMULxx), Move Word (MOVW), and enhanced Load Program
Memory (LPM) added to the AVR instruction set. No timing differences.
AVRe tinyAVR
®
Multiply not included, but else equal to AVRe for megaAVR.
AVRxm XMEGA
®
Significantly different timing compared to AVR(e). The Read Modify Write
(RMW) and DES encryption instructions are unique to this version.
AVRxt (AVR) AVR 2016 and onwards. This variant is based on AVRe and AVRxm.
Closer related to AVRe, but with improved timing.
AVRrc tinyAVR The Reduced Core AVR CPU was developed for ultra-low pinout (6-pin)
size constrained devices. The AVRrc therefore only has a 16 registers
register-file (R31-R16) and a limited instruction set.
Table 4-2. Arithmetic and Logic Instructions
Mnemonic
Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
ADD Rd, Rr Add without
Carry
Rd Rd + Rr Z,C,N,V,S,H 1 1 1 1
ADC Rd, Rr Add with
Carry
Rd Rd + Rr + C Z,C,N,V,S,H 1 1 1 1
ADIW Rd, K Add
Immediate to
Word
Rd Rd + 1:Rd + K Z,C,N,V,S 2 2 2 N/A
SUB Rd, Rr Subtract
without Carry
Rd Rd - Rr Z,C,N,V,S,H 1 1 1 1
SUBI Rd, K Subtract
Immediate
Rd Rd - K Z,C,N,V,S,H 1 1 1 1
SBC Rd, Rr Subtract with
Carry
Rd Rd - Rr - C Z,C,N,V,S,H 1 1 1 1
SBCI Rd, K Subtract
Immediate
with Carry
Rd Rd - K - C Z,C,N,V,S,H 1 1 1 1
SBIW Rd, K Subtract
Immediate
from Word
Rd + 1:Rd Rd + 1:Rd - K Z,C,N,V,S 2 2 2 N/A
AND Rd, Rr Logical AND Rd Rd • Rr Z,N,V,S 1 1 1 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
22
Mnemonic Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
ANDI Rd, K Logical AND
with
Immediate
Rd Rd • K Z,N,V,S 1 1 1 1
OR Rd, Rr Logical OR Rd Rd v Rr Z,N,V,S 1 1 1 1
ORI Rd, K Logical OR
with
Immediate
Rd Rd v K Z,N,V,S 1 1 1 1
EOR Rd, Rr Exclusive OR Rd Rd Rr Z,N,V,S 1 1 1 1
COM Rd One’s
Complement
Rd $FF - Rd Z,C,N,V,S 1 1 1 1
NEG Rd Two’s
Complement
Rd $00 - Rd Z,C,N,V,S,H 1 1 1 1
SBR Rd,K Set Bit(s) in
Register
Rd Rd v K Z,N,V,S 1 1 1 1
CBR Rd,K Clear Bit(s) in
Register
Rd Rd • ($FFh -
K)
Z,N,V,S 1 1 1 1
INC Rd Increment Rd Rd + 1 Z,N,V,S 1 1 1 1
DEC Rd Decrement Rd Rd - 1 Z,N,V,S 1 1 1 1
TST Rd Test for Zero
or Minus
Rd Rd • Rd Z,N,V,S 1 1 1 1
CLR Rd Clear Register Rd Rd Rd Z,N,V,S 1 1 1 1
SER Rd Set Register Rd $FF None 1 1 1 1
MUL Rd,Rr Multiply
Unsigned
R1:R0 Rd x Rr (UU) Z,C 2 2 2 N/A
MULS Rd,Rr Multiply
Signed
R1:R0 Rd x Rr (SS) Z,C 2 2 2 N/A
MULSU Rd,Rr Multiply
Signed with
Unsigned
R1:R0 Rd x Rr (SU) Z,C 2 2 2 N/A
FMUL Rd,Rr Fractional
Multiply
Unsigned
R1:R0 Rd x Rr<<1
(UU)
Z,C 2 2 2 N/A
FMULS Rd,Rr Fractional
Multiply
Signed
R1:R0 Rd x Rr<<1
(SS)
Z,C 2 2 2 N/A
FMULSU Rd,Rr Fractional
Multiply
Signed with
Unsigned
R1:R0 Rd x Rr<<1
(SU)
Z,C 2 2 2 N/A
DES K Data
Encryption
if (H = 0) then
R15:R0
else if (H = 1)
then R15:R0
Encrypt(R15:
R0, K)
Decrypt(R15:
R0, K)
N/A 1/2 N/A N/A
Table 4-3. Branch Instructions
Mnemonic
Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
RJMP k Relative Jump PC PC + k + 1 None 2 2 2 2
IJMP Indirect Jump
to (Z)
PC(15:0)
PC(21:16)
Z
0
None 2 2 2 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
23
Mnemonic Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
EIJMP Extended
Indirect Jump
to (Z)
PC(15:0)
PC(21:16)
Z
EIND
None 2 2 2 N/A
JMP k Jump PC k None 3 3 3 N/A
RCALL k Relative Call
Subroutine
PC PC + k + 1 None 3 / 4
(1)
2 / 3
(1)
2 / 3 3
(1)
ICALL Indirect Call to
(Z)
PC(15:0)
PC(21:16)
Z
0
None 3 / 4
(1)
2 / 3
(1)
2 / 3 3
(1)
EICALL Extended
Indirect Call to
(Z)
PC(15:0)
PC(21:16)
Z
EIND
None 4
(1)
3
(1)
2 / 3 N/A
CALL k Call
Subroutine
PC k None 4 / 5
(1)
3 / 4
(1)
3 / 4 N/A
RET Subroutine
Return
PC STACK None 4 / 5
(1)
4 / 5
(1)
4 / 5 6
(1)
RETI Interrupt
Return
PC STACK I 4 / 5
(1)
4 / 5
(1)
4 / 5 6
(1)
CPSE Rd,Rr Compare,
skip if Equal
if (Rd = Rr)
PC
PC + 2 or 3 None 1 / 2 / 3 1 / 2 / 3 1 / 2 / 3 1 / 2
CP Rd,Rr Compare Rd - Rr Z,C,N,V,S,H 1 1 1 1
CPC Rd,Rr Compare with
Carry
Rd - Rr - C Z,C,N,V,S,H 1 1 1 1
CPI Rd,K Compare with
Immediate
Rd - K Z,C,N,V,S,H 1 1 1 1
SBRC Rr, b Skip if Bit in
Register
Cleared
if (Rr(b) = 0)
PC
PC + 2 or 3 None 1 / 2 / 3 1 / 2 / 3 1 / 2 / 3 1 / 2
SBRS Rr, b Skip if Bit in
Register Set
if (Rr(b) = 1)
PC
PC + 2 or 3 None 1 / 2 / 3 1 / 2 / 3 1 / 2 / 3 1 / 2
SBIC A, b Skip if Bit in
I/O Register
Cleared
if (I/O(A,b) =
0) PC
PC + 2 or 3 None 1 / 2 / 3 2 / 3 / 4 1 / 2 / 3 1 / 2
SBIS A, b Skip if Bit in
I/O Register
Set
If (I/O(A,b) =1)
PC
PC + 2 or 3 None 1 / 2 / 3 2 / 3 / 4 1 / 2 / 3 1 / 2
BRBS s, k Branch if
Status Flag
Set
if (SREG(s) =
1) then PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRBC s, k Branch if
Status Flag
Cleared
if (SREG(s) =
0) then PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BREQ k Branch if
Equal
if (Z = 1) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRNE k Branch if Not
Equal
if (Z = 0) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRCS k Branch if
Carry Set
if (C = 1) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRCC k Branch if
Carry Cleared
if (C = 0) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRSH k Branch if
Same or
Higher
if (C = 0) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
24
Mnemonic Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
BRLO k Branch if
Lower
if (C = 1) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRMI k Branch if
Minus
if (N = 1) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRPL k Branch if Plus if (N = 0) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRGE k Branch if
Greater or
Equal, Signed
if (N V= 0)
then PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRLT k Branch if Less
Than, Signed
if (N V= 1)
then PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRHS k Branch if Half
Carry Flag
Set
if (H = 1) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRHC k Branch if Half
Carry Flag
Cleared
if (H = 0) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRTS k Branch if T
Flag Set
if (T = 1) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRTC k Branch if T
Flag Cleared
if (T = 0) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRVS k Branch if
Overflow Flag
is Set
if (V = 1) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRVC k Branch if
Overflow Flag
is Cleared
if (V = 0) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRIE k Branch if
Interrupt
Enabled
if (I = 1) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
BRID k Branch if
Interrupt
Disabled
if (I = 0) then
PC
PC + k + 1 None 1 / 2 1 / 2 1 / 2 1 / 2
Table 4-4. Data Transfer Instructions
Mnemonic
Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
MOV Rd, Rr Copy Register Rd Rr None 1 1 1 1
MOVW Rd, Rr Copy Register
Pair
Rd+1:Rd Rr+1:Rr None 1 1 1 N/A
LDI Rd, K Load
Immediate
Rd K None 1 1 1 1
LDS Rd, k Load Direct
from data
space
Rd (k) None 2
(1)
2
(1)
3
(1)
2
LD Rd, X Load Indirect Rd (X) None 2
(1)
1
(1)
2
(1)
1 / 2
LD Rd, X+ Load Indirect
and Post-
Increment
Rd
X
(X)
X + 1
None 2
(1)
1
(1)
2
(1)
2 / 3
LD Rd, -X Load Indirect
and Pre-
Decrement
X
Rd
X - 1
(X)
None 2
(1)
2
(1)
2
(1)
2 / 3
LD Rd, Y Load Indirect Rd (Y) None 2
(1)
1
(1)
2
(1)
1 / 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
25
Mnemonic Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
LD Rd, Y+ Load Indirect
and Post-
Increment
Rd
Y
(Y)
Y + 1
None 2
(1)
1
(1)
2
(1)
2 / 3
LD Rd, -Y Load Indirect
and Pre-
Decrement
Y
Rd
Y - 1
(Y)
None 2
(1)
2
(1)
2
(1)
2 / 3
LDD Rd, Y+q Load Indirect
with
Displacement
Rd (Y + q) None 2
(1)
2
(1)
2
(1)
N/A
LD Rd, Z Load Indirect Rd (Z) None 2
(1)
1
(1)
2
(1)
1 / 2
LD Rd, Z+ Load Indirect
and Post-
Increment
Rd
Z
(Z)
Z+1
None 2
(1)
1
(1)
2
(1)
2 / 3
LD Rd, -Z Load Indirect
and Pre-
Decrement
Z
Rd
Z - 1
(Z)
None 2
(1)
2
(1)
2
(1)
2 / 3
LDD Rd, Z+q Load Indirect
with
Displacement
Rd (Z + q) None 2
(1)
2
(1)
2
(1)
N/A
STS k, Rr Store Direct to
Data Space
(k) Rd None 2
(1)(2)
2
(1)(2)
2
(1)(2)
1
ST X, Rr Store Indirect (X) Rr None 1
(1)(2)
1
(1)(2)
1
(1)(2)
1
ST X+, Rr Store Indirect
and Post-
Increment
(X)
X
Rr
X + 1
None 1
(1)(2)
1
(1)(2)
1
(1)(2)
1
ST -X, Rr Store Indirect
and Pre-
Decrement
X
(X)
X - 1
Rr
None 2
(1)(2)
2
(1)(2)
1
(1)(2)
2
ST Y, Rr Store Indirect (Y) Rr None 2
(1)(2)
1
(1)(2)
1
(1)(2)
1
ST Y+, Rr Store Indirect
and Post-
Increment
(Y)
Y
Rr
Y + 1
None 2
(1)(2)
1
(1)(2)
1
(1)(2)
1
ST -Y, Rr Store Indirect
and Pre-
Decrement
Y
(Y)
Y - 1
Rr
None 2
(1)(2)
2
(1)(2)
1
(1)(2)
2
STD Y+q, Rr Store Indirect
with
Displacement
(Y + q) Rr None 2
(1)(2)
2
(1)(2)
1
(1)(2)
N/A
ST Z, Rr Store Indirect (Z) Rr None 2
(1)(2)
1
(1)(2)
1
(1)(2)
1
ST Z+, Rr Store Indirect
and Post-
Increment
(Z)
Z
Rr
Z + 1
None 2
(1)(2)
1
(1)(2)
1
(1)(2)
1
ST -Z, Rr Store Indirect
and Pre-
Decrement
Z Z - 1 None 2
(1)(2)
2
(1)(2)
1
(1)(2)
2
STD Z+q,Rr Store Indirect
with
Displacement
(Z + q) Rr None 2
(1)(2)
2
(1)(2)
1
(1)(2)
N/A
LPM Load Program
Memory
R0 (Z) None 3 3 3 N/A
LPM Rd, Z Load Program
Memory
Rd (Z) None 3 3 3 N/A
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
26
Mnemonic Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
LPM Rd, Z+ Load Program
Memory and
Post-
Increment
Rd
Z
(Z)
Z + 1
None 3 3 3 N/A
ELPM Extended
Load Program
Memory
R0 (RAMPZ:Z) None 3 3 3 N/A
ELPM Rd, Z Extended
Load Program
Memory
Rd (RAMPZ:Z) None 3 3 3 N/A
ELPM Rd, Z+ Extended
Load Program
Memory and
Post-
Increment
Rd
(RAMPZ:Z)
(RAMPZ:Z)
(RAMPZ:Z) +
1
None 3 3 3 N/A
SPM Store
Program
Memory
(RAMPZ:Z) R1:R0 None
(4) (4)
4
(3)
N/A
SPM Z+ Store
Program
Memory and
Post-
Increment by
2
(RAMPZ:Z)
Z
R1:R0
Z + 2
None
(4) (4)
4
(3)
N/A
IN Rd, A In From I/O
Location
Rd I/O(A) None 1 1 1 1
OUT A, Rr Out To I/O
Location
I/O(A) Rr None 1 1 1 1
PUSH Rr Push Register
on Stack
STACK Rr None 2 1
(1)
1 1
(1)
POP Rd Pop Register
from Stack
Rd STACK None 2 2
(1)
2 3
(1)
XCH Z, Rd Exchange (Z)
Rd
Rd
(Z)
None N/A 1 N/A N/A
LAS Z, Rd Load and Set (Z)
Rd
Rd v (Z)
(Z)
None N/A 1 N/A N/A
LAC Z, Rd Load and
Clear
(Z)
Rd
($FF – Rd) •
(Z)
(Z)
None N/A 1 N/A N/A
LAT Z, Rd Load and
Toggle
(Z)
Rd
Rd (Z)
(Z)
None N/A 1 N/A N/A
Table 4-5. Bit and Bit-test Instructions
Mnemonic
Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
LSL Rd Logical Shift
Left
Rd(n+1)
Rd(0)
C
Rd(n)
0
Rd(7)
Z,C,N,V,H 1 1 1 1
LSR Rd Logical Shift
Right
Rd(n)
Rd(7)
C
Rd(n+1)
0
Rd(0)
Z,C,N,V 1 1 1 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
27
Mnemonic Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
ROL Rd Rotate Left
Through
Carry
Rd(0)
Rd(n+1)
C
C
Rd(n)
Rd(7)
Z,C,N,V,H 1 1 1 1
ROR Rd Rotate Right
Through
Carry
Rd(7)
Rd(n)
C
C
Rd(n+1)
Rd(0)
Z,C,N,V 1 1 1 1
ASR Rd Arithmetic
Shift Right
Rd(n) Rd(n+1),
n=0..6
Z,C,N,V 1 1 1 1
SWAP Rd Swap Nibbles Rd(3..0) Rd(7..4) None 1 1 1 1
SBI A, b Set Bit in I/O
Register
I/O(A, b) 1 None 2 1 1 1
CBI A, b Clear Bit in
I/O Register
I/O(A, b) 0 None 2 1 1 1
BST Rr, b Bit Store from
Register to T
T Rr(b) T 1 1 1 1
BLD Rd, b Bit load from
T to Register
Rd(b) T None 1 1 1 1
BSET s Flag Set SREG(s) 1 SREG(s) 1 1 1 1
BCLR s Flag Clear SREG(s) 0 SREG(s) 1 1 1 1
SEC Set Carry C 1 C 1 1 1 1
CLC Clear Carry C 0 C 1 1 1 1
SEN Set Negative
Flag
N 1 N 1 1 1 1
CLN Clear
Negative Flag
N 0 N 1 1 1 1
SEZ Set Zero Flag Z 1 Z 1 1 1 1
CLZ Clear Zero
Flag
Z 0 Z 1 1 1 1
SEI Global
Interrupt
Enable
I 1 I 1 1 1 1
CLI Global
Interrupt
Disable
I 0 I 1 1 1 1
SES Set Signed
Test Flag
S 1 S 1 1 1 1
CLS Clear Signed
Test Flag
S 0 S 1 1 1 1
SEV Set Two’s
Complement
Overflow
V 1 V 1 1 1 1
CLV Clear Two’s
Complement
Overflow
V 0 V 1 1 1 1
SET Set T in
SREG
T 1 T 1 1 1 1
CLT Clear T in
SREG
T 0 T 1 1 1 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
28
Mnemonic Operands Description Op Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
SEH Set Half Carry
Flag in SREG
H 1 H 1 1 1 1
CLH Clear Half
Carry Flag in
SREG
H 0 H 1 1 1 1
Table 4-6. MCU Control Instructions
Mnemonic Operands Description Operation Flags
#Clocks
AVR
#Clocks
AVRxm
#Clocks
AVRxt
#Clocks
AVRrc
BREAK Break (See also in
Debug interface
description)
None 1 1 1 1
NOP No Operation None 1 1 1 1
SLEEP Sleep (see also power
management and
sleep description)
None 1 1 1 1
WDR Watchdog Reset (see also
Watchdog
Controller
description)
None 1 1 1 1
Note: 
1. Cycle time for data memory accesses assume internal RAM access, and are not valid for accesses
through the NVM controller. A minimum of one extra cycle must be added when accessing memory
through the NVM controller (such as Flash and EEPROM), but depending on simultaneous
accesses by other masters or the NVM controller state, there may be more than one extra cycle.
2. One extra cycle must be added when accessing lower (64 bytes of) I/O space.
3. The instruction is not available on all devices.
4. Device dependent. See the device specific datasheet.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
29
5. ADC – Add with Carry
5.1. Description
Adds two registers and the contents of the C Flag and places the result in the destination register Rd.
Operation:
(i) Rd ← Rd + Rr + C
Syntax: Operands: Program Counter:
(i) ADC Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
0001 11rd dddd rrrr
5.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
H Rd3 • Rr3 + Rr3 • R3 + R3 • Rd3
Set if there was a carry from bit 3; cleared otherwise.
S N V, for signed tests.
V Rd7 • Rr7 • R7 + Rd7 • Rr7 • R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd7 • Rr7 + Rr7 • R7 + R7 • Rd7
Set if there was carry from the MSB of the result; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
; Add R1:R0 to R3:R2
add r2,r0 ; Add low byte
adc r3,r1 ; Add with carry high byte
Words 1 (2 bytes)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
30
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
31
6. ADD – Add without Carry
6.1. Description
Adds two registers without the C Flag and places the result in the destination register Rd.
Operation:
(i) (i) Rd ← Rd + Rr
Syntax: Operands: Program Counter:
(i) ADD Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
0000 11rd dddd rrrr
6.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
H Rd3 • Rr3 + Rr3 • R3 + R3 • Rd3
Set if there was a carry from bit 3; cleared otherwise.
S N V, for signed tests.
V Rd7 • Rr7 • R7 + Rd7 • Rr7 • R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd7 • Rr7 + Rr7 • R7 + R7 • Rd7
Set if there was carry from the MSB of the result; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
add r1,r2 ; Add r2 to r1 (r1=r1+r2)
add r28,r28 ; Add r28 to itself (r28=r28+r28)
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
32
7. ADIW – Add Immediate to Word
7.1. Description
Adds an immediate value (0 - 63) to a register pair and places the result in the register pair. This
instruction operates on the upper four register pairs, and is well suited for operations on the pointer
registers.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) Rd+1:Rd ← Rd+1:Rd + K
Syntax: Operands: Program Counter:
(i) ADIW Rd+1:Rd,K d {24,26,28,30}, 0 ≤ K ≤ 63 PC ← PC + 1
16-bit Opcode:
1001 0110 KKdd KKKK
7.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
S N V, for signed tests.
V Rdh7 • R15
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R15
Set if MSB of the result is set; cleared otherwise.
Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $0000; cleared otherwise.
C R15 • Rdh7
Set if there was carry from the MSB of the result; cleared otherwise.
R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0).
Example:
adiw r25:24,1 ; Add 1 to r25:r24
adiw ZH:ZL,63 ; Add 63 to the Z-pointer(r31:r30)
Words 1 (2 bytes)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
33
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
34
8. AND – Logical AND
8.1. Description
Performs the logical AND between the contents of register Rd and register Rr, and places the result in the
destination register Rd.
Operation:
(i) Rd ← Rd • Rr
Syntax: Operands: Program Counter:
(i) AND Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
0010 00rd dddd rrrr
8.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
S N V, for signed tests.
V 0
Cleared.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
and r2,r3 ; Bitwise and r2 and r3, result in r2
ldi r16,1 ; Set bitmask 0000 0001 in r16
and r2,r16 ; Isolate bit 0 in r2
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
35
9. ANDI – Logical AND with Immediate
9.1. Description
Performs the logical AND between the contents of register Rd and a constant, and places the result in the
destination register Rd.
Operation:
(i) Rd ← Rd • K
Syntax: Operands: Program Counter:
(i) ANDI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1
16-bit Opcode:
0111 KKKK dddd KKKK
9.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
S N V, for signed tests.
V 0
Cleared.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
andi r17,$0F ; Clear upper nibble of r17
andi r18,$10 ; Isolate bit 4 in r18
andi r19,$AA ; Clear odd bits of r19
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
36
10. ASR – Arithmetic Shift Right
10.1. Description
Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 is loaded into the C Flag of the
SREG. This operation effectively divides a signed value by two without changing its sign. The Carry Flag
can be used to round the result.
Operation:
(i)
Syntax: Operands: Program Counter:
(i) ASR Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 010d dddd 0101
10.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
S N V, for signed tests.
V N C, for N and C after the shift.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd0
Set if, before the shift, the LSB of Rd was set; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
ldi r16,$10 ; Load decimal 16 into r16
asr r16 ; r16=r16 / 2
ldi r17,$FC ; Load -4 in r17
asr r17 ; r17=r17/2
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
37
11. BCLR – Bit Clear in SREG
11.1. Description
Clears a single Flag in SREG.
Operation:
(i) SREG(s) ← 0
Syntax: Operands: Program Counter:
(i) BCLR s 0 ≤ s ≤ 7 PC ← PC + 1
16-bit Opcode:
1001 0100 1sss 1000
11.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
I 0 if s = 7; Unchanged otherwise.
T 0 if s = 6; Unchanged otherwise.
H 0 if s = 5; Unchanged otherwise.
S 0 if s = 4; Unchanged otherwise.
V 0 if s = 3; Unchanged otherwise.
N 0 if s = 2; Unchanged otherwise.
Z 0 if s = 1; Unchanged otherwise.
C 0 if s = 0; Unchanged otherwise.
Example:
bclr 0 ; Clear Carry Flag
bclr 7 ; Disable interrupts
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
38
12. BLD – Bit Load from the T Flag in SREG to a Bit in Register
12.1. Description
Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
Operation:
(i) Rd(b) ← T
Syntax: Operands: Program Counter:
(i) BLD Rd,b 0 ≤ d ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1
16 bit Opcode:
1111 100d dddd 0bbb
12.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
; Copy bit
bst r1,2 ; Store bit 2 of r1 in T Flag
bld r0,4 ; Load T Flag into bit 4 of r0
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
39
13. BRBC – Branch if Bit in SREG is Cleared
13.1. Description
Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is cleared.
This instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter
k is the offset from PC and is represented in two’s complement form.
Operation:
(i) If SREG(s) = 0 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRBC s,k 0 ≤ s ≤ 7, -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 01kk kkkk ksss
13.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
cpi r20,5 ; Compare r20 to the value 5
brbc 1,noteq ; Branch if Zero Flag cleared
...
noteq: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
40
14. BRBS – Branch if Bit in SREG is Set
14.1. Description
Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is set. This
instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is
the offset from PC and is represented in two’s complement form.
Operation:
(i) If SREG(s) = 1 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRBS s,k 0 ≤ s ≤ 7, -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 00kk kkkk ksss
14.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
bst r0,3 ; Load T bit with bit 3 of r0
brbs 6,bitset ; Branch T bit was set
...
bitset: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
41
15. BRCC – Branch if Carry Cleared
15.1. Description
Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is cleared. This
instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is
the offset from PC and is represented in two’s complement form. (Equivalent to instruction BRBC 0,k.)
Operation:
(i) If C = 0 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRCC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 01kk kkkk k000
15.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
add r22,r23 ; Add r23 to r22
brcc nocarry ; Branch if carry cleared
...
nocarry: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
42
16. BRCS – Branch if Carry Set
16.1. Description
Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is set. This
instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is
the offset from PC and is represented in two’s complement form. (Equivalent to instruction BRBS 0,k.)
Operation:
(i) If C = 1 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRCS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 00kk kkkk k000
16.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
cpi r26,$56 ; Compare r26 with $56
brcs carry ; Branch if carry set
...
carry: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
43
17. BREAK – Break
17.1. Description
The BREAK instruction is used by the On-chip Debug system, and is normally not used in the application
software. When the BREAK instruction is executed, the AVR CPU is set in the Stopped Mode. This gives
the On-chip Debugger access to internal resources.
If any Lock bits are set, or either the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat
the BREAK instruction as a NOP and will not enter the Stopped mode.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) On-chip Debug system break.
Syntax: Operands: Program Counter:
(i) BREAK None PC ← PC + 1
16-bit Opcode:
1001 0101 1001 1000
17.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
44
18. BREQ – Branch if Equal
18.1. Description
Conditional relative branch. Tests the Zero Flag (Z) and branches relatively to PC if Z is set. If the
instruction is executed immediately after any of the instructions CP, CPI, SUB, or SUBI, the branch will
occur if and only if the unsigned or signed binary number represented in Rd was equal to the unsigned or
signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC -
63 ≤ destination ≤ PC + 64). Parameter k is the offset from PC and is represented in two’s complement
form. (Equivalent to instruction BRBS 1,k.)
Operation:
(i) If Rd = Rr (Z = 1) then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BREQ k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 00kk kkkk k001
18.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
cp r1,r0 ; Compare registers r1 and r0
breq equal ; Branch if registers equal
...
equal: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
45
19. BRGE – Branch if Greater or Equal (Signed)
19.1. Description
Conditional relative branch. Tests the Signed Flag (S) and branches relatively to PC if S is cleared. If the
instruction is executed immediately after any of the instructions CP, CPI, SUB, or SUBI, the branch will
occur if and only if the signed binary number represented in Rd was greater than or equal to the signed
binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - 63 ≤
destination ≤ PC + 64). Parameter k is the offset from PC and is represented in two’s complement form.
(Equivalent to instruction BRBC 4,k.)
Operation:
(i) If Rd ≥ Rr (N V = 0) then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRGE k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 01kk kkkk k100
19.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
cp r11,r12 ; Compare registers r11 and r12
brge greateq ; Branch if r11 ≥ r12 (signed)
...
greateq: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
46
20. BRHC – Branch if Half Carry Flag is Cleared
20.1. Description
Conditional relative branch. Tests the Half Carry Flag (H) and branches relatively to PC if H is cleared.
This instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter
k is the offset from PC and is represented in two’s complement form. (Equivalent to instruction BRBC 5,k.)
Operation:
(i) If H = 0 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRHC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 01kk kkkk k101
20.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
brhc hclear ; Branch if Half Carry Flag cleared
...
hclear: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
47
21. BRHS – Branch if Half Carry Flag is Set
21.1. Description
Conditional relative branch. Tests the Half Carry Flag (H) and branches relatively to PC if H is set. This
instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is
the offset from PC and is represented in two’s complement form. (Equivalent to instruction BRBS 5,k.)
Operation:
(i) If H = 1 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRHS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 00kk kkkk k101
21.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
brhs hset ; Branch if Half Carry Flag set
...
hset: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
48
22. BRID – Branch if Global Interrupt is Disabled
22.1. Description
Conditional relative branch. Tests the Global Interrupt Flag (I) and branches relatively to PC if I is cleared.
This instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter
k is the offset from PC and is represented in two’s complement form. (Equivalent to instruction BRBC 7,k.)
Operation:
(i) If I = 0 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRID k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 01kk kkkk k111
22.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
brid intdis ; Branch if interrupt disabled
...
intdis: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
49
23. BRIE – Branch if Global Interrupt is Enabled
23.1. Description
Conditional relative branch. Tests the Global Interrupt Flag (I) and branches relatively to PC if I is set. This
instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is
the offset from PC and is represented in two’s complement form. (Equivalent to instruction BRBS 7,k.)
Operation:
(i) If I = 1 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRIE k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 00kk kkkk k111
23.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
brie inten ; Branch if interrupt enabled
...
inten: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
50
24. BRLO – Branch if Lower (Unsigned)
24.1. Description
Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is set. If the
instruction is executed immediately after any of the instructions CP, CPI, SUB, or SUBI, the branch will
occur if and only if, the unsigned binary number represented in Rd was smaller than the unsigned binary
number represented in Rr. This instruction branches relatively to PC in either direction (PC - 63 ≤
destination ≤ PC + 64). Parameter k is the offset from PC and is represented in two’s complement form.
(Equivalent to instruction BRBS 0,k.)
Operation:
(i) If Rd < Rr (C = 1) then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRLO k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 00kk kkkk k000
24.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
eor r19,r19 ; Clear r19
loop: inc r19 ; Increase r19
...
cpi r19,$10 ; Compare r19 with $10
brlo loop ; Branch if r19 < $10 (unsigned)
nop ; Exit from loop (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
51
25. BRLT – Branch if Less Than (Signed)
25.1. Description
Conditional relative branch. Tests the Signed Flag (S) and branches relatively to PC if S is set. If the
instruction is executed immediately after any of the instructions CP, CPI, SUB, or SUBI, the branch will
occur if and only if, the signed binary number represented in Rd was less than the signed binary number
represented in Rr. This instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC
+ 64). Parameter k is the offset from PC and is represented in two’s complement form. (Equivalent to
instruction BRBS 4,k.)
Operation:
(i) If Rd < Rr (N V = 1) then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRLT k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 00kk kkkk k100
25.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
cp r16,r1 ; Compare r16 to r1
brlt less ; Branch if r16 < r1 (signed)
...
less: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
52
26. BRMI – Branch if Minus
26.1. Description
Conditional relative branch. Tests the Negative Flag (N) and branches relatively to PC if N is set. This
instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is
the offset from PC and is represented in two’s complement form. (Equivalent to instruction BRBS 2,k.)
Operation:
(i) If N = 1 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRMI k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 00kk kkkk k010
26.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
subi r18,4 ; Subtract 4 from r18
brmi negative ; Branch if result negative
...
negative: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
53
27. BRNE – Branch if Not Equal
27.1. Description
Conditional relative branch. Tests the Zero Flag (Z) and branches relatively to PC if Z is cleared. If the
instruction is executed immediately after any of the instructions CP, CPI, SUB, or SUBI, the branch will
occur if and only if, the unsigned or signed binary number represented in Rd was not equal to the
unsigned or signed binary number represented in Rr. This instruction branches relatively to PC in either
direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is the offset from PC and is represented in two’s
complement form. (Equivalent to instruction BRBC 1,k.)
Operation:
(i) If Rd ≠ Rr (Z = 0) then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRNE k -64 ≤ k ≤ +6 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 01kk kkkk k001
27.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
eor r27,r27 ; Clear r27
loop: inc r27 ; Increase r27
...
cpi r27,5 ; Compare r27 to 5
brne loop ; Branch if r27<>5
nop ; Loop exit (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
54
28. BRPL – Branch if Plus
28.1. Description
Conditional relative branch. Tests the Negative Flag (N) and branches relatively to PC if N is cleared. This
instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is
the offset from PC and is represented in two’s complement form. (Equivalent to instruction BRBC 2,k.)
Operation:
(i) If N = 0 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRPL k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 01kk kkkk k010
28.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
subi r26,$50 ; Subtract $50 from r26
brpl positive ; Branch if r26 positive
...
positive: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
55
29. BRSH – Branch if Same or Higher (Unsigned)
29.1. Description
Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is cleared. If the
instruction is executed immediately after execution of any of the instructions CP, CPI, SUB, or SUBI, the
branch will occur if and only if, the unsigned binary number represented in Rd was greater than or equal
to the unsigned binary number represented in Rr. This instruction branches relatively to PC in either
direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is the offset from PC and is represented in two’s
complement form. (Equivalent to instruction BRBC 0,k.)
Operation:
(i) If Rd ≥Rr (C = 0) then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRSH k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 01kk kkkk k000
29.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
subi r19,4 ; Subtract 4 from r19
brsh highsm ; Branch if r19 >= 4 (unsigned)
...
highsm: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
56
30. BRTC – Branch if the T Flag is Cleared
30.1. Description
Conditional relative branch. Tests the T Flag and branches relatively to PC if T is cleared. This instruction
branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is the offset
from PC and is represented in two’s complement form. (Equivalent to instruction BRBC 6,k.)
Operation:
(i) If T = 0 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRTC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 01kk kkkk k110
30.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
bst r3,5 ; Store bit 5 of r3 in T Flag
brtc tclear ; Branch if this bit was cleared
...
tclear: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
57
31. BRTS – Branch if the T Flag is Set
31.1. Description
Conditional relative branch. Tests the T Flag and branches relatively to PC if T is set. This instruction
branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is the offset
from PC and is represented in two’s complement form. (Equivalent to instruction BRBS 6,k.)
Operation:
(i) If T = 1 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRTS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 00kk kkkk k110
31.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
bst r3,5 ; Store bit 5 of r3 in T Flag
brts tset ; Branch if this bit was set
...
tset: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
58
32. BRVC – Branch if Overflow Cleared
32.1. Description
Conditional relative branch. Tests the Overflow Flag (V) and branches relatively to PC if V is cleared. This
instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is
the offset from PC and is represented in two’s complement form. (Equivalent to instruction BRBC 3,k.)
Operation:
(i) If V = 0 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRVC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 01kk kkkk k011
32.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
add r3,r4 ; Add r4 to r3
brvc noover ; Branch if no overflow
...
noover: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
59
33. BRVS – Branch if Overflow Set
33.1. Description
Conditional relative branch. Tests the Overflow Flag (V) and branches relatively to PC if V is set. This
instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). Parameter k is
the offset from PC and is represented in two’s complement form. (Equivalent to instruction BRBS 3,k.)
Operation:
(i) If V = 1 then PC ← PC + k + 1, else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) BRVS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is
false
16-bit Opcode:
1111 00kk kkkk k011
33.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
add r3,r4 ; Add r4 to r3
brvs overfl ; Branch if overflow
...
overfl: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false
2 if condition is true
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
60
34. BSET – Bit Set in SREG
34.1. Description
Sets a single Flag or bit in SREG.
Operation:
(i) SREG(s) ← 1
Syntax: Operands: Program Counter:
(i) BSET s 0 ≤ s ≤ 7 PC ← PC + 1
16-bit Opcode:
1001 0100 0sss 1000
34.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
I 1 if s = 7; Unchanged otherwise.
T 1 if s = 6; Unchanged otherwise.
H 1 if s = 5; Unchanged otherwise.
S 1 if s = 4; Unchanged otherwise.
V 1 if s = 3; Unchanged otherwise.
N 1 if s = 2; Unchanged otherwise.
Z 1 if s = 1; Unchanged otherwise.
C 1 if s = 0; Unchanged otherwise.
Example:
bset 6 ; Set T Flag
bset 7 ; Enable interrupt
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
61
35. BST – Bit Store from Bit in Register to T Flag in SREG
35.1. Description
Stores bit b from Rd to the T Flag in SREG (Status Register).
Operation:
(i) T ← Rd(b)
Syntax: Operands: Program Counter:
(i) BST Rd,b 0 ≤ d ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1
16-bit Opcode:
1111 101d dddd 0bbb
35.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
T 0 if bit b in Rd is cleared. Set to 1 otherwise.
Example:
; Copy bit
bst r1,2 ; Store bit 2 of r1 in T Flag
bld r0,4 ; Load T into bit 4 of r0
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
62
36. CALL – Long Call to a Subroutine
36.1. Description
Calls to a subroutine within the entire Program memory. The return address (to the instruction after the
CALL) will be stored onto the Stack. (See also RCALL). The Stack Pointer uses a post-decrement
scheme during CALL.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) PC ← k Devices with 16-bit PC, 128KB Program memory maximum.
(ii) PC ← k Devices with 22-bit PC, 8MB Program memory maximum.
Syntax: Operands: Program Counter: Stack:
(i) CALL k 0 ≤ k < 64K PC ← k STACK ← PC+2
SP ← SP-2, (2 bytes,
16 bits)
(ii) CALL k 0 ≤ k < 4M PC ← k STACK ← PC+2
SP ← SP-3 (3 bytes,
22 bits)
32-bit Opcode:
1001 010k kkkk 111k
kkkk kkkk kkkk kkkk
36.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
mov r16,r0 ; Copy r0 to r16
call check ; Call subroutine
nop ; Continue (do nothing)
...
check: cpi r16,$42 ; Check if r16 has a special value
breq error ; Branch if equal
ret ; Return from subroutine
...
error: rjmp error ; Infinite loop
Words 2 (4 bytes)
Cycles 4 devices with 16-bit PC
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
63
5 devices with 22-bit PC
Cycles XMEGA 3 devices with 16-bit PC
4 devices with 22-bit PC
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
64
37. CBI – Clear Bit in I/O Register
37.1. Description
Clears a specified bit in an I/O register. This instruction operates on the lower 32 I/O registers –
addresses 0-31.
Operation:
(i) I/O(A,b) ← 0
Syntax: Operands: Program Counter:
(i) CBI A,b 0 ≤ A ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1
16-bit Opcode:
1001 1000 AAAA Abbb
37.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
cbi $12,7 ; Clear bit 7 in Port D
Words 1 (2 bytes)
Cycles 2
Cycles XMEGA 1
Cycles Reduced Core tinyAVR 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
65
38. CBR – Clear Bits in Register
38.1. Description
Clears the specified bits in register Rd. Performs the logical AND between the contents of register Rd and
the complement of the constant mask K. The result will be placed in register Rd.
Operation:
(i) Rd ← Rd • ($FF - K)
Syntax: Operands: Program Counter:
(i) CBR Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1
16-bit Opcode: (see ANDI with K complemented)
38.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
S N V, for signed tests.
V 0
Cleared.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
cbr r16,$F0 ; Clear upper nibble of r16
cbr r18,1 ; Clear bit 0 in r18
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
66
39. CLC – Clear Carry Flag
39.1. Description
Clears the Carry Flag (C) in SREG (Status Register).
Operation:
(i) C ← 0
Syntax: Operands: Program Counter:
(i) CLC None PC ← PC + 1
16-bit Opcode:
1001 0100 1000 1000
39.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
C 0
Carry Flag cleared.
Example:
add r0,r0 ; Add r0 to itself
clc ; Clear Carry Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
67
40. CLH – Clear Half Carry Flag
40.1. Description
Clears the Half Carry Flag (H) in SREG (Status Register).
Operation:
(i) H ← 0
Syntax: Operands: Program Counter:
(i) CLH None PC ← PC + 1
16-bit Opcode:
1001 0100 1101 1000
40.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
H 0
Half Carry Flag cleared.
Example:
clh ; Clear the Half Carry Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
68
41. CLI – Clear Global Interrupt Flag
41.1. Description
Clears the Global Interrupt Flag (I) in SREG (Status Register). The interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction.
Operation:
(i) I ← 0
Syntax: Operands: Program Counter:
(i) CLI None PC ← PC + 1
16-bit Opcode:
1001 0100 1111 1000
41.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
I 0
Global Interrupt Flag cleared.
Example:
in temp, SREG ; Store SREG value (temp must be defined by user)
cli ; Disable interrupts during timed sequence
sbi EECR, EEMWE ; Start EEPROM write
sbi EECR, EEWE
out SREG, temp ; Restore SREG value (I-Flag)
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
69
42. CLN – Clear Negative Flag
42.1. Description
Clears the Negative Flag (N) in SREG (Status Register).
Operation:
(i) N ← 0
Syntax: Operands: Program Counter:
(i) CLN None PC ← PC + 1
16-bit Opcode:
1001 0100 1010 1000
42.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
N 0
Negative Flag cleared.
Example:
add r2,r3 ; Add r3 to r2
cln ; Clear Negative Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
70
43. CLR – Clear Register
43.1. Description
Clears a register. This instruction performs an Exclusive OR between a register and itself. This will clear
all bits in the register.
Operation:
(i) Rd ← Rd Rd
Syntax: Operands: Program Counter:
(i) CLR Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode: (see EOR Rd,Rd)
0010 01dd dddd dddd
43.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0 0 0 1
S 0
Cleared.
V 0
Cleared.
N 0
Cleared.
Z 1
Set.
R (Result) equals Rd after the operation.
Example:
clr r18 ; clear r18
loop: inc r18 ; increase r18
...
cpi r18,$50 ; Compare r18 to $50
brne loop
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
71
44. CLS – Clear Signed Flag
44.1. Description
Clears the Signed Flag (S) in SREG (Status Register).
Operation:
(i) S ← 0
Syntax: Operands: Program Counter:
(i) CLS None PC ← PC + 1
16-bit Opcode:
1001 0100 1100 1000
44.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
S 0
Signed Flag cleared.
Example:
add r2,r3 ; Add r3 to r2
cls ; Clear Signed Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
72
45. CLT – Clear T Flag
45.1. Description
Clears the T Flag in SREG (Status Register).
Operation:
(i) T ← 0
Syntax: Operands: Program Counter:
(i) CLT None PC ← PC + 1
16-bit Opcode:
1001 0100 1110 1000
45.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
T 0
T Flag cleared.
Example:
clt ; Clear T Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
73
46. CLV – Clear Overflow Flag
46.1. Description
Clears the Overflow Flag (V) in SREG (Status Register).
Operation:
(i) V ← 0
Syntax: Operands: Program Counter:
(i) CLV None PC ← PC + 1
16-bit Opcode:
1001 0100 1011 1000
46.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
V 0
Overflow Flag cleared.
Example:
add r2,r3 ; Add r3 to r2
clv ; Clear Overflow Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
74
47. CLZ – Clear Zero Flag
47.1. Description
Clears the Zero Flag (Z) in SREG (Status Register).
Operation:
(i) Z ← 0
Syntax: Operands: Program Counter:
(i) CLZ None PC ← PC + 1
16-bit Opcode:
1001 0100 1001 1000
47.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
Z 0
Zero Flag cleared.
Example:
add r2,r3 ; Add r3 to r2
clz ; Clear zero
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
75
48. COM – One’s Complement
48.1. Description
This instruction performs a One’s Complement of register Rd.
Operation:
(i) Rd ← $FF - Rd
Syntax: Operands: Program Counter:
(i) COM Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 010d dddd 0000
48.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0 1
S N V, for signed tests.
V 0
Cleared.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C 1
Set.
R (Result) equals Rd after the operation.
Example:
com r4 ; Take one’s complement of r4
breq zero ; Branch if zero
...
zero: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
76
49. CP – Compare
49.1. Description
This instruction performs a compare between two registers Rd and Rr. None of the registers are changed.
All conditional branches can be used after this instruction.
Operation:
(i) Rd - Rr
Syntax: Operands: Program Counter:
(i) CP Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
0001 01rd dddd rrrr
49.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
H Rd3 • Rr3 + Rr3 • R3 + R3 • Rd3
Set if there was a borrow from bit 3; cleared otherwise.
S N V, for signed tests.
V Rd7 • Rr7 • R7 + Rd7 • Rr7 • R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd7 • Rr7 + Rr7 • R7 + R7 • Rd7
Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared
otherwise.
R (Result) after the operation.
Example:
cp r4,r19 ; Compare r4 with r19
brne noteq ; Branch if r4 <> r19
...
noteq: nop ; Branch destination (do nothing)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
77
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
78
50. CPC – Compare with Carry
50.1. Description
This instruction performs a compare between two registers Rd and Rr and also takes into account the
previous carry. None of the registers are changed. All conditional branches can be used after this
instruction.
Operation:
(i) Rd - Rr - C
Syntax: Operands: Program Counter:
(i) CPC Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
0000 01rd dddd rrrr
50.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
H Rd3 • Rr3 + Rr3 • R3 + R3 • Rd3
Set if there was a borrow from bit 3; cleared otherwise.
S N V, for signed tests.
V Rd7 • Rr7 • R7 + Rd7 • Rr7 • R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0 • Z
Previous value remains unchanged when the result is zero; cleared otherwise.
C Rd7 • Rr7 + Rr7 • R7 + R7 • Rd7
Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of
Rd; cleared otherwise.
R (Result) after the operation.
Example:
; Compare r3:r2 with r1:r0
cp r2,r0 ; Compare low byte
cpc r3,r1 ; Compare high byte
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
79
brne noteq ; Branch if not equal
...
noteq: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
80
51. CPI – Compare with Immediate
51.1. Description
This instruction performs a compare between register Rd and a constant. The register is not changed. All
conditional branches can be used after this instruction.
Operation:
(i) Rd - K
Syntax: Operands: Program Counter:
(i) CPI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1
16-bit Opcode:
0011 KKKK dddd KKKK
51.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
H Rd3 • K3 + K3 • R3 + R3 • Rd3
Set if there was a borrow from bit 3; cleared otherwise.
S N V, for signed tests.
V Rd7 • K7 • R7 + Rd7 • K7 • R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd7 • K7 + K7 • R7 + R7 • Rd7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.
R (Result) after the operation.
Example:
cpi r19,3 ; Compare r19 with 3
brne error ; Branch if r19<>3
...
error: nop ; Branch destination (do nothing)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
81
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
82
52. CPSE – Compare Skip if Equal
52.1. Description
This instruction performs a compare between two registers Rd and Rr, and skips the next instruction if Rd
= Rr.
Operation:
(i) If Rd = Rr then PC ← PC + 2 (or 3) else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) CPSE Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1, Condition false -
no skip
PC ← PC + 2, Skip a one word
instruction
PC ← PC + 3, Skip a two word
instruction
16-bit Opcode:
0001 00rd dddd rrrr
52.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
inc r4 ; Increase r4
cpse r4,r0 ; Compare r4 to r0
neg r4 ; Only executed if r4<>r0
nop ; Continue (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false (no skip)
2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 if condition is true (skip is executed) and the instruction skipped is 2 words
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
83
53. DEC – Decrement
53.1. Description
Subtracts one -1- from the contents of register Rd and places the result in the destination register Rd.
The C Flag in SREG is not affected by the operation, thus allowing the DEC instruction to be used on a
loop counter in multiple-precision computations.
When operating on unsigned values, only BREQ and BRNE branches can be expected to perform
consistently. When operating on two’s complement values, all signed branches are available.
Operation:
(i) Rd ← Rd - 1
Syntax: Operands: Program Counter:
(i) DEC Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 010d dddd 1010
53.2. Status Register and Boolean Formula
I T H S V N Z C
S N V, for signed tests.
V R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if two’s complement overflow resulted from the operation; cleared otherwise. Two’s complement
overflow occurs if and only if Rd was $80 before the operation.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
ldi r17,$10 ; Load constant in r17
loop: add r1,r2 ; Add r2 to r1
dec r17 ; Decrement r17
brne loop ; Branch if r17<>0
nop ; Continue (do nothing)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
84
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
85
54. DES – Data Encryption Standard
54.1. Description
The module is an instruction set extension to the AVR CPU, performing DES iterations. The 64-bit data
block (plaintext or ciphertext) is placed in the CPU register file, registers R0-R7, where LSB of data is
placed in LSB of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including parity bits) is
placed in registers R8-R15, organized in the register file with LSB of key in LSB of R8 and MSB of key in
MSB of R15. Executing one DES instruction performs one round in the DES algorithm. Sixteen rounds
must be executed in increasing order to form the correct DES ciphertext or plaintext. Intermediate results
are stored in the register file (R0-R15) after each DES instruction. The instruction's operand (K)
determines which round is executed, and the half carry flag (H) determines whether encryption or
decryption is performed.
The DES algorithm is described in “Specifications for the Data Encryption Standard” (Federal Information
Processing Standards Publication 46). Intermediate results in this implementation differ from the standard
because the initial permutation and the inverse initial permutation are performed in each iteration. This
does not affect the result in the final ciphertext or plaintext, but reduces the execution time.
Operation:
(i) If H = 0 then Encrypt round (R7-R0, R15-R8, K)
If H = 1 then Decrypt round (R7-R0, R15-R8, K)
Syntax: Operands: Program Counter:
(i) DES K 0x00≤K≤0x0F PC ← PC + 1
16-bit Opcode:
1001 0100 KKKK 1011
Example:
DES 0x00
DES 0x01
DES 0x0E
DES 0x0F
Words 1 (2 bytes)
Cycles 1
Note:  If the DES instruction is succeeding a non-DES instruction, an extra cycle is inserted.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
86
55. EICALL – Extended Indirect Call to Subroutine
55.1. Description
Indirect call of a subroutine pointed to by the Z (16 bits) Pointer Register in the Register File and the EIND
Register in the I/O space. This instruction allows for indirect calls to the entire 4M (words) Program
memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme during EICALL.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) PC(15:0) ← Z(15:0)
PC(21:16) ← EIND
Syntax: Operands: Program Counter: Stack:
(i) EICALL None See Operation STACK ← PC + 1
SP ← SP - 3 (3 bytes,
22 bits)
16-bit Opcode:
1001 0101 0001 1001
55.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
ldi r16,$05 ; Set up EIND and Z-pointer
out EIND,r16
ldi r30,$00
ldi r31,$10
eicall ; Call to $051000
Words 1 (2 bytes)
Cycles 4 (only implemented in devices with 22-bit PC)
Cycles XMEGA 3 (only implemented in devices with 22-bit PC)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
87
56. EIJMP – Extended Indirect Jump
56.1. Description
Indirect jump to the address pointed to by the Z (16 bits) Pointer Register in the Register File and the
EIND Register in the I/O space. This instruction allows for indirect jumps to the entire 4M (words)
Program memory space. See also IJMP.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) PC(15:0) ← Z(15:0)
PC(21:16) ← EIND
Syntax: Operands: Program Counter: Stack:
(i) EIJMP None See Operation Not Affected
16-bit Opcode:
1001 0100 0001 1001
56.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
ldi r16,$05 ; Set up EIND and Z-pointer
out EIND,r16
ldi r30,$00
ldi r31,$10
eijmp ; Jump to $051000
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
88
57. ELPM – Extended Load Program Memory
57.1. Description
Loads one byte pointed to by the Z-register and the RAMPZ Register in the I/O space, and places this
byte in the destination register Rd. This instruction features a 100% space effective constant initialization
or constant data fetch. The Program memory is organized in 16-bit words while the Z-pointer is a byte
address. Thus, the least significant bit of the Z-pointer selects either low byte (Z
LSB
= 0) or high byte (Z
LSB
= 1). This instruction can address the entire Program memory space. The Z-pointer Register can either be
left unchanged by the operation, or it can be incremented. The incrementation applies to the entire 24-bit
concatenation of the RAMPZ and Z-pointer Registers.
Devices with Self-Programming capability can use the ELPM instruction to read the Fuse and Lock bit
value. Refer to the device documentation for a detailed description.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
The result of these combinations is undefined:
ELPM r30, Z+
ELPM r31, Z+
Operation: Comment:
(i) R0 ← (RAMPZ:Z) RAMPZ:Z: Unchanged,
R0 implied destination
register
(ii) Rd ← (RAMPZ:Z) RAMPZ:Z: Unchanged
(iii) Rd ← (RAMPZ:Z) (RAMPZ:Z) ←
(RAMPZ:Z) + 1
RAMPZ:Z: Post
incremented
Syntax: Operands: Program Counter:
(i) ELPM None, R0 implied PC ← PC + 1
(ii) ELPM Rd, Z 0 ≤ d ≤ 31 PC ← PC + 1
(iii) ELPM Rd, Z+ 0 ≤ d ≤ 31 PC ← PC + 1
16 bit Opcode:
(i) 1001 0101 1101 1000
(ii) 1001 000d dddd 0110
(iii) 1001 000d dddd 0111
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
89
57.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
ldi ZL, byte3(Table_1<<1) ; Initialize Z-pointer
out RAMPZ, ZL
ldi ZH, byte2(Table_1<<1)
ldi ZL, byte1(Table_1<<1)
elpm r16, Z+ ; Load constant from Program
; memory pointed to by RAMPZ:Z (Z is r31:r30)
...
Table_1:
.dw 0x3738 ; 0x38 is addressed when Z
LSB
= 0
; 0x37 is addressed when Z
LSB
= 1
...
Words 1 (2 bytes)
Cycles 3
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
90
58. EOR – Exclusive OR
58.1. Description
Performs the logical EOR between the contents of register Rd and register Rr and places the result in the
destination register Rd.
Operation:
(i) Rd ← Rd Rr
Syntax: Operands: Program Counter:
(i) EOR Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 3 PC ← PC + 1
16-bit Opcode:
0010 01rd dddd rrrr
58.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
S N V, for signed tests.
V 0
Cleared.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
eor r4,r4 ; Clear r4
eor r0,r22 ; Bitwise exclusive or between r0 and r22
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
91
59. FMUL – Fractional Multiply Unsigned
59.1. Description
This instruction performs 8-bit × 8-bit → 16-bit unsigned multiplication and shifts the result one bit left.
Rd Rr R1 R0
Multiplicand
×
Multiplier
Product High Product Low
8 8 16
Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of
the radix point. A multiplication between two numbers in the formats (N1.Q1) and (N2.Q2) results in the
format ((N1+N2).(Q1+Q2)). For signal processing applications, the format (1.7) is widely used for the
inputs, resulting in a (2.14) format for the product. A left shift is required for the high byte of the product to
be in the same format as the inputs. The FMUL instruction incorporates the shift operation in the same
number of cycles as MUL.
The (1.7) format is most commonly used with signed numbers, while FMUL performs an unsigned
multiplication. This instruction is therefore most useful for calculating one of the partial products when
performing a signed multiplication with 16-bit inputs in the (1.15) format, yielding a result in the (1.31)
format. Note: the result of the FMUL operation may suffer from a 2’s complement overflow if interpreted
as a number in the (1.15) format. The MSB of the multiplication before shifting must be taken into
account, and is found in the carry bit. See the following example.
The multiplicand Rd and the multiplier Rr are two registers containing unsigned fractional numbers where
the implicit radix point lies between bit 6 and bit 7. The 16-bit unsigned fractional product with the implicit
radix point between bit 14 and bit 15 is placed in R1 (high byte) and R0 (low byte).
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) R1:R0 ← Rd × Rr (unsigned (1.15) ← unsigned (1.7) × unsigned (1.7))
Syntax: Operands: Program Counter:
(i) FMUL Rd,Rr 16 ≤ d ≤ 23, 16 ≤ r ≤ 23 PC ← PC + 1
(i) PC ← PC + 1
16-bit Opcode:
0000 0011 0ddd 1rrr
59.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
C R16
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
92
Set if bit 15 of the result before left shift is set; cleared otherwise.
Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $0000; cleared otherwise.
R (Result) equals R1,R0 after the operation.
Example:
;******************************************************************************
;* DESCRIPTION
;* Signed fractional multiply of two 16-bit numbers with 32-bit result.
;* USAGE
;* r19:r18:r17:r16 = ( r23:r22 * r21:r20 ) << 1
;******************************************************************************
fmuls16x16_32:
clr r2
fmuls r23, r21 ;((signed)ah * (signed)bh) << 1
movw r19:r18, r1:r0
fmul r22, r20 ;(al * bl) << 1
adc r18, r2
movw r17:r16, r1:r0
fmulsu r23, r20 ;((signed)ah * bl) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2
fmulsu r21, r22 ;((signed)bh * al) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
93
60. FMULS – Fractional Multiply Signed
60.1. Description
This instruction performs 8-bit × 8-bit → 16-bit signed multiplication and shifts the result one bit left.
Rd Rr R1 R0
Multiplicand
×
Multiplier
Product High Product Low
8 8 16
Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of
the radix point. A multiplication between two numbers in the formats (N1.Q1) and (N2.Q2) results in the
format ((N1+N2).(Q1+Q2)). For signal processing applications, the format (1.7) is widely used for the
inputs, resulting in a (2.14) format for the product. A left shift is required for the high byte of the product to
be in the same format as the inputs. The FMULS instruction incorporates the shift operation in the same
number of cycles as MULS.
The multiplicand Rd and the multiplier Rr are two registers containing signed fractional numbers where
the implicit radix point lies between bit 6 and bit 7. The 16-bit signed fractional product with the implicit
radix point between bit 14 and bit 15 is placed in R1 (high byte) and R0 (low byte).
Note that when multiplying 0x80 (-1) with 0x80 (-1), the result of the shift operation is 0x8000 (-1). The
shift operation thus gives a two’s complement overflow. This must be checked and handled by software.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) R1:R0 ← Rd × Rr (signed (1.15) ← signed (1.7) × signed (1.7))
Syntax: Operands: Program Counter:
(i) FMULS Rd,Rr 16 ≤ d ≤ 23, 16 ≤ r ≤ 23 PC ← PC + 1
16-bit Opcode:
0000 0011 1ddd 0rrr
60.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
C R16
Set if bit 15 of the result before left shift is set; cleared otherwise.
Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $0000; cleared otherwise.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
94
R (Result) equals R1,R0 after the operation.
Example:
fmuls r23,r22 ; Multiply signed r23 and r22 in (1.7) format, result in (1.15) format
mov w r23:r22,r1:r0 ; Copy result back in r23:r22
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
95
61. FMULSU – Fractional Multiply Signed with Unsigned
61.1. Description
This instruction performs 8-bit × 8-bit → 16-bit signed multiplication and shifts the result one bit left.
Rd Rr R1 R0
Multiplicand
×
Multiplier
Product High Product Low
8 8 16
Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of
the radix point. A multiplication between two numbers in the formats (N1.Q1) and (N2.Q2) results in the
format ((N1+N2).(Q1+Q2)). For signal processing applications, the format (1.7) is widely used for the
inputs, resulting in a (2.14) format for the product. A left shift is required for the high byte of the product to
be in the same format as the inputs. The FMULSU instruction incorporates the shift operation in the same
number of cycles as MULSU.
The (1.7) format is most commonly used with signed numbers, while FMULSU performs a multiplication
with one unsigned and one signed input. This instruction is therefore most useful for calculating two of the
partial products when performing a signed multiplication with 16-bit inputs in the (1.15) format, yielding a
result in the (1.31) format. Note: the result of the FMULSU operation may suffer from a 2's complement
overflow if interpreted as a number in the (1.15) format. The MSB of the multiplication before shifting must
be taken into account, and is found in the carry bit. See the following example.
The multiplicand Rd and the multiplier Rr are two registers containing fractional numbers where the
implicit radix point lies between bit 6 and bit 7. The multiplicand Rd is a signed fractional number, and the
multiplier Rr is an unsigned fractional number. The 16-bit signed fractional product with the implicit radix
point between bit 14 and bit 15 is placed in R1 (high byte) and R0 (low byte).
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) R1:R0 ← Rd × Rr (signed (1.15) ← signed (1.7) × unsigned (1.7))
Syntax: Operands: Program Counter:
(i) FMULSU Rd,Rr 16 ≤ d ≤ 23, 16 ≤ r ≤ 23 PC ← PC + 1
16-bit Opcode:
0000 0011 1ddd 1rrr
61.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
C R16
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
96
Set if bit 15 of the result before left shift is set; cleared otherwise.
Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $0000; cleared otherwise.
R (Result) equals R1,R0 after the operation.
Example:
;******************************************************************************
;* DESCRIPTION
;* Signed fractional multiply of two 16-bit numbers with 32-bit result.
;* USAGE
;* r19:r18:r17:r16 = ( r23:r22 * r21:r20 ) << 1
;******************************************************************************
fmuls16x16_32:
clr r2
fmuls r23, r21 ;((signed)ah * (signed)bh) << 1
movw r19:r18, r1:r0
fmul r22, r20 ;(al * bl) << 1
adc r18, r2
movw r17:r16, r1:r0
fmulsu r23, r20 ;((signed)ah * bl) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2
fmulsu r21, r22 ;((signed)bh * al) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
97
62. ICALL – Indirect Call to Subroutine
62.1. Description
Calls to a subroutine within the entire 4M (words) Program memory. The return address (to the instruction
after the CALL) will be stored onto the Stack. See also RCALL. The Stack Pointer uses a post-decrement
scheme during CALL.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation: Comment:
(i) PC(15:0) ← Z(15:0) Devices with 16-bit PC, 128KB Program memory maximum.
(ii) PC(15:0) ← Z(15:0)
PC(21:16) ← 0
Devices with 22-bit PC, 8MB Program memory maximum.
Syntax: Operands: Program Counter: Stack:
(i) ICALL None See Operation STACK ← PC + 1
SP ← SP - 2 (2 bytes,
16 bits)
(ii) ICALL None See Operation STACK ← PC + 1
SP ← SP - 3 (3 bytes,
22 bits)
16-bit Opcode:
1001 0101 0000 1001
62.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
mov r30,r0 ; Set offset to call table
icall ; Call routine pointed to by r31:r30
Words 1 (2 bytes)
Cycles 3 devices with 16-bit PC
4 devices with 22-bit PC
Cycles XMEGA
®
2 devices with 16-bit PC
3 devices with 22-bit PC
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
98
63. IJMP – Indirect Jump
63.1. Description
Indirect jump to the address pointed to by the Z (16 bits) Pointer Register in the Register File. The Z-
pointer Register is 16 bits wide and allows jump within the lowest 64K words (128KB) section of Program
memory.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation: Comment:
(i) PC ← Z(15:0) Devices with 16-bit PC, 128KB Program memory maximum.
(ii) PC(15:0) ← Z(15:0)
PC(21:16) ← 0
Devices with 22-bit PC, 8MB Program memory maximum.
Syntax: Operands: Program Counter: Stack:
(i), (ii) IJMP None See Operation Not Affected
16-bit Opcode:
1001 0100 0000 1001
63.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
mov r30,r0 ; Set offset to jump table
ijmp ; Jump to routine pointed to by r31:r30
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
99
64. IN - Load an I/O Location to Register
64.1. Description
Loads data from the I/O Space (Ports, Timers, Configuration Registers, etc.) into register Rd in the
Register File.
Operation:
(i) Rd ← I/O(A)
Syntax: Operands: Program Counter:
(i) IN Rd,A 0 ≤ d ≤ 31, 0 ≤ A ≤ 63 PC ← PC + 1
16-bit Opcode:
1011 0AAd dddd AAAA
64.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
in r25,$16 ; Read Port B
cpi r25,4 ; Compare read value to constant
breq exit ; Branch if r25=4
...
exit: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
100
65. INC – Increment
65.1. Description
Adds one -1- to the contents of register Rd and places the result in the destination register Rd.
The C Flag in SREG is not affected by the operation, thus allowing the INC instruction to be used on a
loop counter in multiple-precision computations.
When operating on unsigned numbers, only BREQ and BRNE branches can be expected to perform
consistently. When operating on two’s complement values, all signed branches are available.
Operation:
(i) Rd ← Rd + 1
Syntax: Operands: Program Counter:
(i) INC Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 010d dddd 0011
65.2. Status Register and Boolean Formula
I T H S V N Z C
S N V, for signed tests.
V R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if two’s complement overflow resulted from the operation; cleared otherwise. Two’s complement
overflow occurs if and only if Rd was $7F before the operation.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
clr r22 ; clear r22
loop: inc r22 ; increment r22
...
cpi r22,$4F ; Compare r22 to $4f
brne loop ; Branch if not equal
nop ; Continue (do nothing)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
101
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
102
66. JMP – Jump
66.1. Description
Jump to an address within the entire 4M (words) Program memory. See also RJMP.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) PC ← k
Syntax: Operands: Program Counter: Stack:
(i) JMP k 0 ≤ k < 4M PC ← k Unchanged
32-bit Opcode:
1001 010k kkkk 110k
kkkk kkkk kkkk kkkk
66.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
mov r1,r0 ; Copy r0 to r1
jmp farplc ; Unconditional jump
...
farplc: nop ; Jump destination (do nothing)
Words 2 (4 bytes)
Cycles 3
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
103
67. LAC – Load and Clear
67.1. Description
Load one byte indirect from data space to register and stores and clear the bits in data space specified by
the register. The instruction can only be used towards internal SRAM.
The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64KB. To access another data segment in devices with more than
64KB data space, the RAMPZ in register in the I/O area has to be changed.
The Z-pointer Register is left unchanged by the operation. This instruction is especially suited for clearing
status bits stored in SRAM.
Operation:
(i) (Z) ← ($FF – Rd) • (Z), Rd ← (Z)
Syntax: Operands: Program Counter:
(i) LAC Z,Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 001r rrrr 0110
67.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
104
68. LAS – Load and Set
68.1. Description
Load one byte indirect from data space to register and set bits in data space specified by the register. The
instruction can only be used towards internal SRAM.
The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64KB. To access another data segment in devices with more than
64KB data space, the RAMPZ in register in the I/O area has to be changed.
The Z-pointer Register is left unchanged by the operation. This instruction is especially suited for setting
status bits stored in SRAM.
Operation:
(i) (Z) ← Rd v (Z), Rd ← (Z)
Syntax: Operands: Program Counter:
(i) LAS Z,Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 001r rrrr 0101
68.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
105
69. LAT – Load and Toggle
69.1. Description
Load one byte indirect from data space to register and toggles bits in the data space specified by the
register. The instruction can only be used towards SRAM.
The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64KB. To access another data segment in devices with more than
64KB data space, the RAMPZ in register in the I/O area has to be changed.
The Z-pointer Register is left unchanged by the operation. This instruction is especially suited for
changing status bits stored in SRAM.
Operation:
(i) (Z) ← Rd (Z), Rd ← (Z)
Syntax: Operands: Program Counter:
(i) LAT Z,Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 001r rrrr 0111
69.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
106
70. LD – Load Indirect from Data Space to Register using Index X
70.1. Description
Loads one byte indirect from the data space to a register. For parts with SRAM, the data space consists
of the Register File, I/O memory, and internal SRAM (and external SRAM if applicable). For parts without
SRAM, the data space consists of the Register File only. In some parts the Flash Memory has been
mapped to the data space and can be read using this command. The EEPROM has a separate address
space.
The data location is pointed to by the X (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64KB. To access another data segment in devices with more than
64KB data space, the RAMPX in register in the I/O area has to be changed.
The X-pointer Register can either be left unchanged by the operation, or it can be post-incremented or
pre-decremented. These features are especially suited for accessing arrays, tables, and Stack Pointer
usage of the X-pointer Register. Note that only the low byte of the X-pointer is updated in devices with no
more than 256 bytes data space. For such devices, the high byte of the pointer is not used by this
instruction and can be used for other purposes. The RAMPX Register in the I/O area is updated in parts
with more than 64KB data space or more than 64KB Program memory, and the increment/decrement is
added to the entire 24-bit address on such devices.
Not all variants of this instruction is available in all devices. Refer to the device specific instruction set
summary.
In the Reduced Core tinyAVR the LD instruction can be used to achieve the same operation as LPM
since the program memory is mapped to the data memory space.
The result of these combinations is undefined:
LD r26, X+
LD r27, X+
LD r26, -X
LD r27, -X
Using the X-pointer:
Operation: Comment:
(i) Rd ← (X) X: Unchanged
(ii) Rd ← (X) X ← X + 1 X: Post incremented
(iii) X ← X - 1 Rd ← (X) X: Pre decremented
Syntax: Operands: Program Counter:
(i) LD Rd, X 0 ≤ d ≤ 31 PC ← PC + 1
(ii) LD Rd, X+ 0 ≤ d ≤ 31 PC ← PC + 1
(iii) LD Rd, -X 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
107
(i) 1001 000d dddd 1100
(ii) 1001 000d dddd 1101
(iii) 1001 000d dddd 1110
70.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
clr r27 ; Clear X high byte
ldi r26,$60 ; Set X low byte to $60
ld r0,X+ ; Load r0 with data space loc. $60(X post inc)
ld r1,X ; Load r1 with data space loc. $61
ldi r26,$63 ; Set X low byte to $63
ld r2,X ; Load r2 with data space loc. $63
ld r3,–X ; Load r3 with data space loc. $62(X pre dec)
Words 1 (2 bytes)
Cycles (i): 1
(2)
(ii): 2
(iii): 3
(2)
Cycles XMEGA (i): 1
(1)
(ii): 1
(1)
(iii): 2
(1)
1. Note:  If the LD instruction is accessing internal SRAM, one extra cycle is inserted.
2. Note:  LD instruction can load data from program memory since the flash is memory mapped.
Loading data from the data memory takes one clock cycle, and loading from the program memory
takes two clock cycles. But if an interrupt occur (before the last clock cycle) no additional clock
cycles are necessary when loading from the program memory. Hence, the instruction takes only
one clock cycle to execute.
LD instruction with pre-decrement can load data from program memory since the flash is memory
mapped. Loading data from the data memory takes two clock cycles, and loading from the program
memory takes three clock cycles. But if an interrupt occur (before the last clock cycle) no additional
clock cycles are necessary when loading from the program memory. Hence, the instruction takes
only one clock cycle to execute.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
108
71. LD (LDD) – Load Indirect from Data Space to Register using Index Y
71.1. Description
Loads one byte indirect with or without displacement from the data space to a register. For parts with
SRAM, the data space consists of the Register File, I/O memory, and internal SRAM (and external SRAM
if applicable). For parts without SRAM, the data space consists of the Register File only. In some parts
the Flash Memory has been mapped to the data space and can be read using this command. The
EEPROM has a separate address space.
The data location is pointed to by the Y (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64KB. To access another data segment in devices with more than
64KB data space, the RAMPY in register in the I/O area has to be changed.
The Y-pointer Register can either be left unchanged by the operation, or it can be post-incremented or
pre-decremented. These features are especially suited for accessing arrays, tables, and Stack Pointer
usage of the Y-pointer Register. Note that only the low byte of the Y-pointer is updated in devices with no
more than 256 bytes data space. For such devices, the high byte of the pointer is not used by this
instruction and can be used for other purposes. The RAMPY Register in the I/O area is updated in parts
with more than 64KB data space or more than 64KB Program memory, and the increment/decrement/
displacement is added to the entire 24-bit address on such devices.
Not all variants of this instruction is available in all devices. Refer to the device specific instruction set
summary.
In the Reduced Core tinyAVR the LD instruction can be used to achieve the same operation as LPM
since the program memory is mapped to the data memory space.
The result of these combinations is undefined:
LD r28, Y+
LD r29, Y+
LD r28, -Y
LD r29, -Y
Using the Y-pointer:
Operation: Comment:
(i) Rd ← (Y) Y: Unchanged
(ii) Rd ← (Y), Y ← Y + 1 Y: Post incremented
(iii) Y ← Y - 1, Rd ← (Y) Y: Pre decremented
(iv) Rd ← (Y+q) Y: Unchanged, q: Displacement
Syntax: Operands: Program Counter:
(i) LD Rd, Y 0 ≤ d ≤ 31 PC ← PC + 1
(ii) LD Rd, Y+ 0 ≤ d ≤ 31 PC ← PC + 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
109
(iii) LD Rd, -Y 0 ≤ d ≤ 31 PC ← PC + 1
(iv) LDD Rd, Y+q 0 ≤ d ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1
16-bit Opcode:
(i) 1000 000d dddd 1000
(ii) 1001 000d dddd 1001
(iii) 1001 000d dddd 1010
(iv) 10q0 qq0d dddd 1qqq
71.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
clr r29 ; Clear Y high byte
ldi r28,$60 ; Set Y low byte to $60
ld r0,Y+ ; Load r0 with data space loc. $60(Y post inc)
ld r1,Y ; Load r1 with data space loc. $61
ldi r28,$63 ; Set Y low byte to $63
ld r2,Y ; Load r2 with data space loc. $63
ld r3,-Y ; Load r3 with data space loc. $62(Y pre dec)
ldd r4,Y+2 ; Load r4 with data space loc. $64
Words 1 (2 bytes)
Cycles (i): 1
(2)
(ii): 2
(iii): 3
(2)
Cycles XMEGA (i): 1
(1)
(ii): 1
(1)
(iii): 2
(1)
(iv): 2
(1)
1. Note:  If the LD instruction is accessing internal SRAM, one extra cycle is inserted.
2. Note:  LD instruction can load data from program memory since the flash is memory mapped.
Loading data from the data memory takes one clock cycle, and loading from the program memory
takes two clock cycles. But if an interrupt occur (before the last clock cycle) no additional clock
cycles are necessary when loading from the program memory. Hence, the instruction takes only
one clock cycle to execute.
LD instruction with pre-decrement can load data from program memory since the flash is memory
mapped. Loading data from the data memory takes two clock cycles, and loading from the program
memory takes three clock cycles. But if an interrupt occur (before the last clock cycle) no additional
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
110
clock cycles are necessary when loading from the program memory. Hence, the instruction takes
only one clock cycle to execute.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
111
72. LD (LDD) – Load Indirect From Data Space to Register using Index Z
72.1. Description
Loads one byte indirect with or without displacement from the data space to a register. For parts with
SRAM, the data space consists of the Register File, I/O memory, and internal SRAM (and external SRAM
if applicable). For parts without SRAM, the data space consists of the Register File only. In some parts
the Flash Memory has been mapped to the data space and can be read using this command. The
EEPROM has a separate address space.
The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64KB. To access another data segment in devices with more than
64KB data space, the RAMPZ in register in the I/O area has to be changed.
The Z-pointer Register can either be left unchanged by the operation, or it can be post-incremented or
pre-decremented. These features are especially suited for Stack Pointer usage of the Z-pointer Register,
however, because the Z-pointer Register can be used for indirect subroutine calls, indirect jumps and
table look-up, it is often more convenient to use the X- or Y-pointer as a dedicated Stack Pointer. Note
that only the low byte of the Z-pointer is updated in devices with no more than 256 bytes data space. For
such devices, the high byte of the pointer is not used by this instruction and can be used for other
purposes. The RAMPZ Register in the I/O area is updated in parts with more than 64KB data space or
more than 64KB Program memory, and the increment/decrement/displacement is added to the entire 24-
bit address on such devices.
Not all variants of this instruction is available in all devices. Refer to the device specific instruction set
summary.
In the tinyAVR reduced core the LD instruction can be used to achieve the same operation as LPM since
the program memory is mapped to the data memory space.
For using the Z-pointer for table look-up in Program memory see the LPM and ELPM instructions.
The result of these combinations is undefined:
LD r30, Z+
LD r31, Z+
LD r30, -Z
LD r31, -Z
Using the Z-pointer:
Operation: Comment:
(i) Rd ← (Z) Z: Unchanged
(ii) Rd ← (Z), Z ← Z + 1 Z: Post incremented
(iii) Z ← Z - 1, Rd ← (Z) Z: Pre decremented
(iv) Rd ← (Z+q) Z: Unchanged, q: Displacement
Syntax: Operands: Program Counter:
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
112
(i) LD Rd, Z 0 ≤ d ≤ 31 PC ← PC + 1
(ii) LD Rd, Z+ 0 ≤ d ≤ 31 PC ← PC + 1
(iii) LD Rd, -Z 0 ≤ d ≤ 31 PC ← PC + 1
(iv) LDD Rd, Z+q 0 ≤ d ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1
16-bit Opcode:
(i) 1000 000d dddd 0000
(ii) 1001 000d dddd 0001
(iii) 1001 000d dddd 0010
(iv) 10q0 qq0d dddd 0qqq
72.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
clr r31 ; Clear Z high byte
ldi r30,$60 ; Set Z low byte to $60
ld r0,Z+ ; Load r0 with data space loc. $60(Z post inc)
ld r1,Z ; Load r1 with data space loc. $61
ldi r30,$63 ; Set Z low byte to $63
ld r2,Z ; Load r2 with data space loc. $63
ld r3,-Z ; Load r3 with data space loc. $62(Z pre dec)
ldd r4,Z+2 ; Load r4 with data space loc. $64
Words 1 (2 bytes)
Cycles (i): 1
(2)
(ii): 2
(iii): 3
(2)
Cycles XMEGA (i): 1
(1)
(ii): 1
(1)
(iii): 2
(1)
(iv): 2
(1)
1. Note:  If the LD instruction is accessing internal SRAM, one extra cycle is inserted.
2. Note:  LD instruction can load data from program memory since the flash is memory mapped.
Loading data from the data memory takes one clock cycle, and loading from the program memory
takes two clock cycles. But if an interrupt occur (before the last clock cycle) no additional clock
cycles are necessary when loading from the program memory. Hence, the instruction takes only
one clock cycle to execute.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
113
LD instruction with pre-decrement can load data from program memory since the flash is memory
mapped. Loading data from the data memory takes two clock cycles, and loading from the program
memory takes three clock cycles. But if an interrupt occur (before the last clock cycle) no additional
clock cycles are necessary when loading from the program memory. Hence, the instruction takes
only one clock cycle to execute.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
114
73. LDI – Load Immediate
73.1. Description
Loads an 8-bit constant directly to register 16 to 31.
Operation:
(i) Rd ← K
Syntax: Operands: Program Counter:
(i) LDI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1
16-bit Opcode:
1110 KKKK dddd KKKK
73.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
clr r31 ; Clear Z high byte
ldi r30,$F0 ; Set Z low byte to $F0
lpm ; Load constant from Program
; memory pointed to by Z
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
115
74. LDS – Load Direct from Data Space
74.1. Description
Loads one byte from the data space to a register. For parts with SRAM, the data space consists of the
Register File, I/O memory, and internal SRAM (and external SRAM if applicable). For parts without
SRAM, the data space consists of the register file only. The EEPROM has a separate address space.
A 16-bit address must be supplied. Memory access is limited to the current data segment of 64KB. The
LDS instruction uses the RAMPD Register to access memory above 64KB. To access another data
segment in devices with more than 64KB data space, the RAMPD in register in the I/O area has to be
changed.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) Rd ← (k)
Syntax: Operands: Program Counter:
(i) LDS Rd,k 0 ≤ d ≤ 31, 0 ≤ k ≤ 65535 PC ← PC + 2
32-bit Opcode:
1001 000d dddd 0000
kkkk kkkk kkkk kkkk
74.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
lds r2,$FF00 ; Load r2 with the contents of data space location $FF00
add r2,r1 ; add r1 to r2
sts $FF00,r2 ; Write back
Words 2 (4 bytes)
Cycles 2
Cycles XMEGA 2 If the LDS instruction is accessing internal SRAM, one extra cycle is inserted
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
116
75. LDS (16-bit) – Load Direct from Data Space
75.1. Description
Loads one byte from the data space to a register. For parts with SRAM, the data space consists of the
Register File, I/O memory, and internal SRAM (and external SRAM if applicable). For parts without
SRAM, the data space consists of the register file only. In some parts the Flash memory has been
mapped to the data space and can be read using this command. The EEPROM has a separate address
space.
A 7-bit address must be supplied. The address given in the instruction is coded to a data space address
as follows:
ADDR[7:0] = (INST[8], INST[8], INST[10], INST[9], INST[3], INST[2], INST[1], INST[0])
Memory access is limited to the address range 0x40...0xbf.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) Rd ← (k)
Syntax: Operands: Program Counter:
(i) LDS Rd,k 16 ≤ d ≤ 31, 0 ≤ k ≤ 127 PC ← PC + 1
16-bit Opcode:
1010 0kkk dddd kkkk
75.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
lds r16,$00 ; Load r16 with the contents of data space location $00
add r16,r17 ; add r17 to r16
sts $00,r16 ; Write result to the same address it was fetched from
Words 1 (2 bytes)
Cycles 1
Note:  Registers r0...r15 are remapped to r16...r31.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
117
76. LPM – Load Program Memory
76.1. Description
Loads one byte pointed to by the Z-register into the destination register Rd. This instruction features a
100% space effective constant initialization or constant data fetch. The Program memory is organized in
16-bit words while the Z-pointer is a byte address. Thus, the least significant bit of the Z-pointer selects
either low byte (Z
LSB
= 0) or high byte (Z
LSB
= 1). This instruction can address the first 64KB (32K words)
of Program memory. The Z-pointer Register can either be left unchanged by the operation, or it can be
incremented. The incrementation does not apply to the RAMPZ Register.
Devices with Self-Programming capability can use the LPM instruction to read the Fuse and Lock bit
values. Refer to the device documentation for a detailed description.
The LPM instruction is not available in all devices. Refer to the device specific instruction set summary.
The result of these combinations is undefined:
LPM r30, Z+
LPM r31, Z+
Operation: Comment:
(i) R0 ← (Z) Z: Unchanged, R0 implied
destination register
(ii) Rd ← (Z) Z: Unchanged
(iii) Rd ← (Z) Z ← Z + 1 Z: Post incremented
Syntax: Operands: Program Counter:
(i) LPM None, R0 implied PC ← PC + 1
(ii) LPM Rd, Z 0 ≤ d ≤ 31 PC ← PC + 1
(iii) LPM Rd, Z+ 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
(i) 1001 0101 1100 1000
(ii) 1001 000d dddd 0100
(iii) 1001 000d dddd 0101
76.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
118
Example:
ldi ZH, high(Table_1<<1) ; Initialize Z-pointer
ldi ZL, low(Table_1<<1)
lpm r16, Z ; Load constant from Program
; Memory pointed to by Z (r31:r30)
...
Table_1:
.dw 0x5876 ; 0x76 is addresses when Z
LSB
= 0
; 0x58 is addresses when Z
LSB
= 1
...
Words 1 (2 bytes)
Cycles 3
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
119
77. LSL – Logical Shift Left
77.1. Description
Shifts all bits in Rd one place to the left. Bit 0 is cleared. Bit 7 is loaded into the C Flag of the SREG. This
operation effectively multiplies signed and unsigned values by two.
Operation:
(i)
C
b7 - - - - - - - - - - - - - - - - - - b0
0
Syntax: Operands: Program Counter:
(i) LSL Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode: (see ADD Rd,Rd)
0000 11dd dddd dddd
77.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
H Rd3
S N V, for signed tests.
V N C, for N and C after the shift.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd7
Set if, before the shift, the MSB of Rd was set; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
add r0,r4 ; Add r4 to r0
lsl r0 ; Multiply r0 by 2
Words 1 (2 bytes)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
120
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
121
78. LSR – Logical Shift Right
78.1. Description
Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is loaded into the C Flag of the SREG.
This operation effectively divides an unsigned value by two. The C Flag can be used to round the result.
Operation:
(i)
0
b7 - - - - - - - - - - - - - - - - - - b0
C
Syntax: Operands: Program Counter:
(i) LSR Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 010d dddd 0110
78.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
S N V, for signed tests.
V N C, for N and C after the shift.
N 0
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd0
Set if, before the shift, the LSB of Rd was set; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
add r0,r4 ; Add r4 to r0
lsr r0 ; Divide r0 by 2
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
122
79. MOV – Copy Register
79.1. Description
This instruction makes a copy of one register into another. The source register Rr is left unchanged, while
the destination register Rd is loaded with a copy of Rr.
Operation:
(i) Rd ← Rr
Syntax: Operands: Program Counter:
(i) MOV Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
0010 11rd dddd rrrr
79.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
mov r16,r0 ; Copy r0 to r16
call check ; Call subroutine
...
check: cpi r16,$11 ; Compare r16 to $11
...
ret ; Return from subroutine
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
123
80. MOVW – Copy Register Word
80.1. Description
This instruction makes a copy of one register pair into another register pair. The source register pair Rr
+1:Rr is left unchanged, while the destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) Rd+1:Rd ← Rr+1:Rr
Syntax: Operands: Program Counter:
(i) MOVW Rd+1:Rd,Rr+1:Rr d {0,2,...,30}, r {0,2,...,30} PC ← PC + 1
16-bit Opcode:
0000 0001 dddd rrrr
80.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
mov w r17:16,r1:r0 ; Copy r1:r0 to r17:r16
call check ; Call subroutine
...
check: cpi r16,$11 ; Compare r16 to $11
...
cpi r17,$32 ; Compare r17 to $32
...
ret ; Return from subroutine
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
124
81. MUL – Multiply Unsigned
81.1. Description
This instruction performs 8-bit × 8-bit → 16-bit unsigned multiplication.
Rd Rr R1 R0
Multiplicand
×
Multiplier
Product High Product Low
8 8 16
The multiplicand Rd and the multiplier Rr are two registers containing unsigned numbers. The 16-bit
unsigned product is placed in R1 (high byte) and R0 (low byte). Note that if the multiplicand or the
multiplier is selected from R0 or R1 the result will overwrite those after multiplication.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) R1:R0 ← Rd × Rr (unsigned ← unsigned × unsigned)
Syntax: Operands: Program Counter:
(i) MUL Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 11rd dddd rrrr
81.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
C R15
Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $0000; cleared otherwise.
R (Result) equals R1,R0 after the operation.
Example:
mul r5,r4 ; Multiply unsigned r5 and r4
mov w r4,r0 ; Copy result back in r5:r4
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
125
82. MULS – Multiply Signed
82.1. Description
This instruction performs 8-bit × 8-bit → 16-bit signed multiplication.
Rd Rr R1 R0
Multiplicand
×
Multiplier
Product High Product Low
8 8 16
The multiplicand Rd and the multiplier Rr are two registers containing signed numbers. The 16-bit signed
product is placed in R1 (high byte) and R0 (low byte).
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) R1:R0 ← Rd × Rr (signed ← signed × signed)
Syntax: Operands: Program Counter:
(i) MULS Rd,Rr 16 ≤ d ≤ 31, 16 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
0000 0010 dddd rrrr
82.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
C R15
Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $0000; cleared otherwise.
R (Result) equals R1,R0 after the operation.
Example:
muls r21,r20 ; Multiply signed r21 and r20
mov w r20,r0 ; Copy result back in r21:r20
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
126
83. MULSU – Multiply Signed with Unsigned
83.1. Description
This instruction performs 8-bit × 8-bit → 16-bit multiplication of a signed and an unsigned number.
Rd Rr R1 R0
Multiplicand Multiplier
Product High Product Low
8 8 16
The multiplicand Rd and the multiplier Rr are two registers. The multiplicand Rd is a signed number, and
the multiplier Rr is unsigned. The 16-bit signed product is placed in R1 (high byte) and R0 (low byte).
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) R1:R0 ← Rd × Rr (signed ← signed × unsigned)
Syntax: Operands: Program Counter:
(i) MULSU Rd,Rr 16 ≤ d ≤ 23, 16 ≤ r ≤ 23 PC ← PC + 1
16-bit Opcode:
0000 0011 0ddd 0rrr
83.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
C R15
Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $0000; cleared otherwise.
R (Result) equals R1,R0 after the operation.
Example:
;******************************************************************************
;* DESCRIPTION
;* Signed multiply of two 16-bit numbers with 32-bit result.
;* USAGE
;* r19:r18:r17:r16 = r23:r22 * r21:r20
;******************************************************************************
muls16x16_32:
clr r2
muls r23, r21 ; (signed)ah * (signed)bh
movw r19:r18, r1:r0
mul r22, r20 ; al * bl
movw r17:r16, r1:r0
mulsu r23, r20 ; (signed)ah * bl
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
127
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2
mulsu r21, r22 ; (signed)bh * al
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2
ret
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
128
84. NEG – Two’s Complement
84.1. Description
Replaces the contents of register Rd with its two’s complement; the value $80 is left unchanged.
Operation:
(i) Rd ← $00 - Rd
Syntax: Operands: Program Counter:
(i) NEG Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 010d dddd 0001
84.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
H Ρ3 + Rd3
Set if there was a borrow from bit 3; cleared otherwise.
S N V, for signed tests.
V R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a two’s complement overflow from the implied subtraction from zero; cleared otherwise.
A two’s complement overflow will occur if and only if the contents of the Register after operation
(Result) is $80.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared otherwise. The C Flag will be set
in all cases except when the contents of Register after operation is $00.
R (Result) equals Rd after the operation.
Example:
sub r11,r0 ; Subtract r0 from r11
brpl positive ; Branch if result positive
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
129
neg r11 ; Take two’s complement of r11
positive: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
130
85. NOP – No Operation
85.1. Description
This instruction performs a single cycle No Operation.
Operation:
(i) No
Syntax: Operands: Program Counter:
(i) NOP None PC ← PC + 1
16-bit Opcode:
0000 0000 0000 0000
85.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
clr r16 ; Clear r16
ser r17 ; Set r17
out $18,r16 ; Write zeros to Port B
nop ; Wait (do nothing)
out $18,r17 ; Write ones to Port B
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
131
86. OR – Logical OR
86.1. Description
Performs the logical OR between the contents of register Rd and register Rr, and places the result in the
destination register Rd.
Operation:
(i) Rd ← Rd v Rr
Syntax: Operands: Program Counter:
(i) OR Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
0010 10rd dddd rrrr
86.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
S N V, for signed tests.
V 0
Cleared.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
or r15,r16 ; Do bitwise or between registers
bst r15,6 ; Store bit 6 of r15 in T Flag
brts ok ; Branch if T Flag set
...
ok: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
132
87. ORI – Logical OR with Immediate
87.1. Description
Performs the logical OR between the contents of register Rd and a constant, and places the result in the
destination register Rd.
Operation:
(i) Rd ← Rd v K
Syntax: Operands: Program Counter:
(i) ORI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1
16-bit Opcode:
0110 KKKK dddd KKKK
87.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
S N V, for signed tests.
V 0
Cleared.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
ori r16,$F0 ; Set high nibble of r16
ori r17,1 ; Set bit 0 of r17
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
133
88. OUT – Store Register to I/O Location
88.1. Description
Stores data from register Rr in the Register File to I/O Space (Ports, Timers, Configuration Registers,
etc.).
Operation:
(i) I/O(A) ← Rr
Syntax: Operands: Program Counter:
(i) OUT A,Rr 0 ≤ r ≤ 31, 0 ≤ A ≤ 63 PC ← PC + 1
16-bit Opcode:
1011 1AAr rrrr AAAA
88.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
clr r16 ; Clear r16
ser r17 ; Set r17
out $18,r16 ; Write zeros to Port B
nop ; Wait (do nothing)
out $18,r17 ; Write ones to Port B
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
134
89. POP – Pop Register from Stack
89.1. Description
This instruction loads register Rd with a byte from the STACK. The Stack Pointer is pre-incremented by 1
before the POP.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) Rd ← STACK
Syntax: Operands: Program Counter: Stack:
(i) POP Rd 0 ≤ d ≤ 31 PC ← PC + 1 SP ← SP + 1
16-bit Opcode:
1001 000d dddd 1111
89.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
call routine ; Call subroutine
...
routine: push r14 ; Save r14 on the Stack
push r13 ; Save r13 on the Stack
...
pop r13 ; Restore r13
pop r14 ; Restore r14
ret ; Return from subroutine
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
135
90. PUSH – Push Register on Stack
90.1. Description
This instruction stores the contents of register Rr on the STACK. The Stack Pointer is post-decremented
by 1 after the PUSH.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) STACK ← Rr
Syntax: Operands: Program Counter: Stack:
(i) PUSH Rr 0 ≤ r ≤ 31 PC ← PC + 1 SP ← SP - 1
16-bit Opcode:
1001 001d dddd 1111
90.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
call routine ; Call subroutine
...
routine: push r14 ; Save r14 on the Stack
push r13 ; Save r13 on the Stack
...
pop r13 ; Restore r13
pop r14 ; Restore r14
ret ; Return from subroutine
Words 1 (2 bytes)
Cycles 2
Cycles XMEGA 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
136
91. RCALL – Relative Call to Subroutine
91.1. Description
Relative call to an address within PC - 2K + 1 and PC + 2K (words). The return address (the instruction
after the RCALL) is stored onto the Stack. See also CALL. For AVR microcontrollers with Program
memory not exceeding 4K words (8KB) this instruction can address the entire memory from every
address location. The Stack Pointer uses a post-decrement scheme during RCALL.
Operation: Comment:
(i) PC ← PC + k + 1 Devices with 16-bit PC, 128KB Program memory maximum.
(ii) PC ← PC + k + 1 Devices with 22-bit PC, 8MB Program memory maximum.
Syntax: Operands: Program Counter: Stack:
(i) RCALL k -2K ≤ k < 2K PC ← PC + k + 1 STACK ← PC + 1
SP ← SP - 2 (2 bytes,
16 bits)
(ii) RCALL k -2K ≤ k < 2K PC ← PC + k + 1 STACK ← PC + 1
SP ← SP - 3 (3 bytes,
22 bits)
16-bit Opcode:
1101 kkkk kkkk kkkk
91.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
rcall routine ; Call subroutine
...
routine: push r14 ; Save r14 on the Stack
...
pop r14 ; Restore r14
ret ; Return from subroutine
Words 1 (2 bytes)
Cycles 3 devices with 16-bit PC
4 devices with 22-bit PC
Cycles XMEGA 2 devices with 16-bit PC
3 devices with 22-bit PC
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
137
Cycles Reduced Core tinyAVR 4
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
138
92. RET – Return from Subroutine
92.1. Description
Returns from subroutine. The return address is loaded from the STACK. The Stack Pointer uses a pre-
increment scheme during RET.
Operation:
Operation: Comment:
(i) PC(15:0) ← STACK Devices with 16-bit PC, 128KB Program memory maximum.
(ii) PC(21:0) ← STACK Devices with 22-bit PC, 8MB Program memory maximum.
Syntax: Operands: Program Counter: Stack:
(i) RET None See Operation SP ← SP + 2, (2 bytes,
16 bits)
(ii) RET None See Operation SP ← SP + 3, (3 bytes,
22 bits)
16-bit Opcode:
1001 0101 0000 1000
92.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
call routine ; Call subroutine
...
routine: push r14 ; Save r14 on the Stack
...
pop r14 ; Restore r14
ret ; Return from subroutine
Words 1 (2 bytes)
Cycles 4 devices with 16-bit PC
5 devices with 22-bit PC
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
139
93. RETI – Return from Interrupt
93.1. Description
Returns from interrupt. The return address is loaded from the STACK and the Global Interrupt Flag is set.
Note that the Status Register is not automatically stored when entering an interrupt routine, and it is not
restored when returning from an interrupt routine. This must be handled by the application program. The
Stack Pointer uses a pre-increment scheme during RETI.
Operation: Comment:
(i) PC(15:0) ← STACK Devices with 16-bit PC, 128KB Program memory maximum.
(ii) PC(21:0) ← STACK Devices with 22-bit PC, 8MB Program memory maximum.
Syntax: Operands: Program Counter: Stack:
(i) RETI None See Operation SP ← SP + 2 (2 bytes,
16 bits)
(ii) RETI None See Operation SP ← SP + 3 (3 bytes,
22 bits)
16-bit Opcode:
1001 0101 0001 1000
93.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
1
I 1
The I Flag is set.
Example:
...
extint: push r0 ; Save r0 on the Stack
...
pop r0 ; Restore r0
reti ; Return and enable interrupts
Words 1 (2 bytes)
Cycles 4 devices with 16-bit PC
5 devices with 22-bit PC
Note:  RETI behaves differently in megaAVR and AVR XMEGA devices. In the megaAVR series of
devices, the global interrupt flag is cleared by hardware once an interrupt occurs and this bit is set when
RETI is executed. In the AVR XMEGA devices, RETI will not modify the global interrupt flag in SREG
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
140
since it is not cleared by hardware while entering ISR. This bit should be modified using SEI and CLI
instructions when needed.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
141
94. RJMP – Relative Jump
94.1. Description
Relative jump to an address within PC - 2K +1 and PC + 2K (words). For AVR microcontrollers with
Program memory not exceeding 4K words (8KB) this instruction can address the entire memory from
every address location. See also JMP.
Operation:
(i) PC ← PC + k + 1
Syntax: Operands: Program Counter: Stack:
(i) RJMP k -2K ≤ k < 2K PC ← PC + k + 1 Unchanged
16-bit Opcode:
1100 kkkk kkkk kkkk
94.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
cpi r16,$42 ; Compare r16 to $42
brne error ; Branch if r16 <> $42
rjmp ok ; Unconditional branch
error: add r16,r17 ; Add r17 to r16
inc r16 ; Increment r16
ok: nop ; Destination for rjmp (do nothing)
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
142
95. ROL – Rotate Left trough Carry
95.1. Description
Shifts all bits in Rd one place to the left. The C Flag is shifted into bit 0 of Rd. Bit 7 is shifted into the C
Flag. This operation, combined with LSL, effectively multiplies multi-byte signed and unsigned values by
two.
Operation:
C
¨
b7 - - - - - - - - - - - - - - - - - - b0
C
Syntax: Operands: Program Counter:
(i) ROL Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode: (see ADC Rd,Rd)
0001 11dd dddd dddd
95.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
H Rd3
S N V, for signed tests.
V N C, for N and C after the shift.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd7
Set if, before the shift, the MSB of Rd was set; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
lsl r18 ; Multiply r19:r18 by two
rol r19 ; r19:r18 is a signed or unsigned two-byte integer
brcs oneenc ; Branch if carry set
...
oneenc: nop ; Branch destination (do nothing)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
143
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
144
96. ROR – Rotate Right through Carry
96.1. Description
Shifts all bits in Rd one place to the right. The C Flag is shifted into bit 7 of Rd. Bit 0 is shifted into the C
Flag. This operation, combined with ASR, effectively divides multi-byte signed values by two. Combined
with LSR it effectively divides multi-byte unsigned values by two. The Carry Flag can be used to round the
result.
Operation:
C
b7 - - - - - - - - - - - - - - - - - - b0
C
Syntax: Operands: Program Counter:
(i) ROR Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 010d dddd 0111
96.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
S N V, for signed tests.
V N C, for N and C after the shift.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd0
Set if, before the shift, the LSB of Rd was set; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
lsr r19 ; Divide r19:r18 by two
ror r18 ; r19:r18 is an unsigned two-byte integer
brcc zeroenc1 ; Branch if carry cleared
asr r17 ; Divide r17:r16 by two
ror r16 ; r17:r16 is a signed two-byte integer
brcc zeroenc2 ; Branch if carry cleared
...
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
145
zeroenc1: nop ; Branch destination (do nothing)
...
zeroenc1: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
146
97. SBC – Subtract with Carry
97.1. Description
Subtracts two registers and subtracts with the C Flag, and places the result in the destination register Rd.
Operation:
(i) Rd ← Rd - Rr - C
Syntax: Operands: Program Counter:
(i) SBC Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
0000 10rd dddd rrrr
97.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
H Rd3 • Rr3 + Rr3 • R3 + R3 • Rd3
Set if there was a borrow from bit 3; cleared otherwise.
S N V, for signed tests.
V Rd7 • Rr7 • R7 + Rd7 • Rr7 • R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0 • Z
Previous value remains unchanged when the result is zero; cleared otherwise.
C Rd7 • Rr7 + Rr7 • R7 + R7 • Rd7
Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of
the Rd; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
; Subtract r1:r0 from r3:r2
sub r2,r0 ; Subtract low byte
sbc r3,r1 ; Subtract with carry high byte
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
147
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
148
98. SBCI – Subtract Immediate with Carry SBI – Set Bit in I/O Register
98.1. Description
Subtracts a constant from a register and subtracts with the C Flag, and places the result in the destination
register Rd.
Operation:
(i) Rd ← Rd - K - C
Syntax: Operands: Program Counter:
(i) SBCI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1
16-bit Opcode:
0100 KKKK dddd KKKK
98.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
H Rd3 • K3 + K3 • R3 + R3 • Rd3
Set if there was a borrow from bit 3; cleared otherwise.
S N V, for signed tests.
V Rd7 • K7 • R7 + Rd7 • K7 • R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0 • Z
Previous value remains unchanged when the result is zero; cleared otherwise.
C Rd7 • K7 + K7 • R7 + R7 • Rd7
Set if the absolute value of the constant plus previous carry is larger than the absolute value of Rd;
cleared otherwise.
R (Result) equals Rd after the operation.
Example:
; Subtract $4F23 from r17:r16
subi r16,$23 ; Subtract low byte
sbci r17,$4F ; Subtract with carry high byte
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
149
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
150
99. SBI – Set Bit in I/O Register
99.1. Description
Sets a specified bit in an I/O Register. This instruction operates on the lower 32 I/O Registers –
addresses 0-31.
Operation:
(i) I/O(A,b) ← 1
Syntax: Operands: Program Counter:
(i) SBI A,b 0 ≤ A ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1
16-bit Opcode:
1001 1010 AAAA Abbb
99.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
out $1E,r0 ; Write EEPROM address
sbi $1C,0 ; Set read bit in EECR
in r1,$1D ; Read EEPROM data
Words 1 (2 bytes)
Cycles 2
Cycles XMEGA 1
Cycles Reduced Core tinyAVR 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
151
100. SBIC – Skip if Bit in I/O Register is Cleared
100.1. Description
This instruction tests a single bit in an I/O Register and skips the next instruction if the bit is cleared. This
instruction operates on the lower 32 I/O Registers – addresses 0-31.
Operation:
(i) If I/O(A,b) = 0 then PC ← PC + 2 (or 3) else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) SBIC A,b 0 ≤ A ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, Condition false -
no skip
PC ← PC + 2, Skip a one word
instruction
PC ← PC + 3, Skip a two word
instruction
16-bit Opcode:
1001 1001 AAAA Abbb
100.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
e2wait: sbic $1C,1 ; Skip next inst. if EEWE cleared
rjmp e2wait ; EEPROM write not finished
nop ; Continue (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false (no skip)
2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 if condition is true (skip is executed) and the instruction skipped is 2 words
Cycles XMEGA 2 if condition is false (no skip)
3 if condition is true (skip is executed) and the instruction skipped is 1 word
4 if condition is true (skip is executed) and the instruction skipped is 2 words
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
152
101. SBIS – Skip if Bit in I/O Register is Set
101.1. Description
This instruction tests a single bit in an I/O Register and skips the next instruction if the bit is set. This
instruction operates on the lower 32 I/O Registers – addresses 0-31.
Operation:
(i) If I/O(A,b) = 1 then PC ← PC + 2 (or 3) else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) SBIS A,b 0 ≤ A ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, Condition false -
no skip
PC ← PC + 2, Skip a one word
instruction
PC ← PC + 3, Skip a two word
instruction
16-bit Opcode:
1001 1011 AAAA Abbb
101.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
waitset: sbis $10,0 ; Skip next inst. if bit 0 in Port D set
rjmp waitset ; Bit not set
nop ; Continue (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false (no skip)
2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 if condition is true (skip is executed) and the instruction skipped is 2 words
Cycles XMEGA 2 if condition is false (no skip)
3 if condition is true (skip is executed) and the instruction skipped is 1 word
4 if condition is true (skip is executed) and the instruction skipped is 2 words
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
153
102. SBIW – Subtract Immediate from Word
102.1. Description
Subtracts an immediate value (0-63) from a register pair and places the result in the register pair. This
instruction operates on the upper four register pairs, and is well suited for operations on the Pointer
Registers.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) Rd+1:Rd ← Rd+1:Rd - K
Syntax: Operands: Program Counter:
(i) SBIW Rd+1:Rd,K d {24,26,28,30}, 0 ≤ K ≤ 63 PC ← PC + 1
16-bit Opcode:
1001 0111 KKdd KKKK
102.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
S N V, for signed tests.
V R15 • Rdh7
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R15
Set if MSB of the result is set; cleared otherwise.
Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $0000; cleared otherwise.
C R15 • Rdh7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.
R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0).
Example:
sbiw r25:r24,1 ; Subtract 1 from r25:r24
sbiw YH:YL,63 ; Subtract 63 from the Y-pointer(r29:r28)
Words 1 (2 bytes)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
154
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
155
103. SBR – Set Bits in Register
103.1. Description
Sets specified bits in register Rd. Performs the logical ORI between the contents of register Rd and a
constant mask K, and places the result in the destination register Rd.
Operation:
(i) Rd ← Rd v K
Syntax: Operands: Program Counter:
(i) SBR Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1
16-bit Opcode:
0110 KKKK dddd KKKK
103.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
S N V, for signed tests.
V 0
Cleared.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
sbr r16,3 ; Set bits 0 and 1 in r16
sbr r17,$F0 ; Set 4 MSB in r17
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
156
104. SBRC – Skip if Bit in Register is Cleared
104.1. Description
This instruction tests a single bit in a register and skips the next instruction if the bit is cleared.
Operation:
Operation:
(i) If Rr(b) = 0 then PC ← PC + 2 (or 3) else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) SBRC Rr,b 0 ≤ r ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, Condition false -
no skip
PC ← PC + 2, Skip a one word
instruction
PC ← PC + 3, Skip a two word
instruction
16-bit Opcode:
1111 110r rrrr 0bbb
104.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
sub r0,r1 ; Subtract r1 from r0
sbrc r0,7 ; Skip if bit 7 in r0 cleared
sub r0,r1 ; Only executed if bit 7 in r0 not cleared
nop ; Continue (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false (no skip)
2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 if condition is true (skip is executed) and the instruction skipped is 2 words
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
157
105. SBRS – Skip if Bit in Register is Set
105.1. Description
This instruction tests a single bit in a register and skips the next instruction if the bit is set.
Operation:
(i) If Rr(b) = 1 then PC ← PC + 2 (or 3) else PC ← PC + 1
Syntax: Operands: Program Counter:
(i) SBRS Rr,b 0 ≤ r ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, Condition false -
no skip
PC ← PC + 2, Skip a one word
instruction
PC ← PC + 3, Skip a two word
instruction
16-bit Opcode:
1111 111r rrrr 0bbb
105.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
sub r0,r1 ; Subtract r1 from r0
sbrs r0,7 ; Skip if bit 7 in r0 set
neg r0 ; Only executed if bit 7 in r0 not set
nop ; Continue (do nothing)
Words 1 (2 bytes)
Cycles 1 if condition is false (no skip)
2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 if condition is true (skip is executed) and the instruction skipped is 2 words
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
158
106. SEC – Set Carry Flag
106.1. Description
Sets the Carry Flag (C) in SREG (Status Register).
Operation:
(i) C ← 1
Syntax: Operands: Program Counter:
(i) SEC None PC ← PC + 1
16-bit Opcode:
1001 0100 0000 1000
106.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
1
C 1
Carry Flag set.
Example:
sec ; Set Carry Flag
adc r0,r1 ; r0=r0+r1+1
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
159
107. SEH – Set Half Carry Flag
107.1. Description
Sets the Half Carry (H) in SREG (Status Register).
Operation:
(i) H ← 1
Syntax: Operands: Program Counter:
(i) SEH None PC ← PC + 1
16-bit Opcode:
1001 0100 0101 1000
107.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
1
H 1
Half Carry Flag set.
Example:
seh ; Set Half Carry Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
160
108. SEI – Set Global Interrupt Flag
108.1. Description
Sets the Global Interrupt Flag (I) in SREG (Status Register). The instruction following SEI will be
executed before any pending interrupts.
Operation:
(i) I ← 1
Syntax: Operands: Program Counter:
(i) SEI None PC ← PC + 1
16-bit Opcode:
1001 0100 0111 1000
108.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
1
I 1
Global Interrupt Flag set.
Example:
sei ; set global interrupt enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending interrupt(s)
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
161
109. SEN – Set Negative Flag
109.1. Description
Sets the Negative Flag (N) in SREG (Status Register).
Operation:
(i) N ← 1
Syntax: Operands: Program Counter:
(i) SEN None PC ← PC + 1
16-bit Opcode:
1001 0100 0010 1000
109.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
1
N 1
Negative Flag set.
Example:
add r2,r19 ; Add r19 to r2
sen ; Set Negative Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
162
110. SER – Set all Bits in Register
110.1. Description
Loads $FF directly to register Rd.
Operation:
(i) Rd ← $FF
Syntax: Operands: Program Counter:
(i) SER Rd 16 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1110 1111 dddd 1111
110.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
clr r16 ; Clear r16
ser r17 ; Set r17
out $18,r16 ; Write zeros to Port B
nop ; Delay (do nothing)
out $18,r17 ; Write ones to Port B
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
163
111. SES – Set Signed Flag
111.1. Description
Sets the Signed Flag (S) in SREG (Status Register).
Operation:
(i) S ← 1
Syntax: Operands: Program Counter:
(i) SES None PC ← PC + 1
16-bit Opcode:
1001 0100 0100 1000
111.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
1
S 1
Signed Flag set.
Example:
add r2,r19 ; Add r19 to r2
ses ; Set Negative Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
164
112. SET – Set T Flag
112.1. Description
Sets the T Flag in SREG (Status Register).
Operation:
(i) T ← 1
Syntax: Operands: Program Counter:
(i) SET None PC ← PC + 1
16-bit Opcode:
1001 0100 0110 1000
112.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
1
T 1
T Flag set.
Example:
set ; Set T Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
165
113. SEV – Set Overflow Flag
113.1. Description
Sets the Overflow Flag (V) in SREG (Status Register).
Operation:
(i) V ← 1
Syntax: Operands: Program Counter:
(i) SEV None PC ← PC + 1
16-bit Opcode:
1001 0100 0011 1000
113.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
1
V V: 1
Overflow Flag set.
Example:
add r2,r19 ; Add r19 to r2
sev ; Set Overflow Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
166
114. SEZ – Set Zero Flag
114.1. Description
Sets the Zero Flag (Z) in SREG (Status Register).
Operation:
(i) Z ← 1
Syntax: Operands: Program Counter:
(i) SEZ None PC ← PC + 1
16-bit Opcode:
1001 0100 0001 1000
114.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
1
Z 1
Zero Flag set.
Example:
add r2,r19 ; Add r19 to r2
sez ; Set Zero Flag
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
167
115. SLEEP
115.1. Description
This instruction sets the circuit in sleep mode defined by the MCU Control Register.
Operation:
(i) Refer to the device documentation for detailed description of SLEEP usage.
Syntax: Operands: Program Counter:
(i) SLEEP None PC ← PC + 1
16-bit Opcode:
1001 0101 1000 1000
115.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
mov r0,r11 ; Copy r11 to r0
ldi r16,(1<<SE) ; Enable sleep mode
out MCUCR, r16
sleep ; Put MCU in sleep mode
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
168
116. SPM – Store Program Memory
116.1. Description
SPM can be used to erase a page in the Program memory, to write a page in the Program memory (that
is already erased), and to set Boot Loader Lock bits. In some devices, the Program memory can be
written one word at a time, in other devices an entire page can be programmed simultaneously after first
filling a temporary page buffer. In all cases, the Program memory must be erased one page at a time.
When erasing the Program memory, the RAMPZ and Z-register are used as page address. When writing
the Program memory, the RAMPZ and Z-register are used as page or word address, and the R1:R0
register pair is used as data
(1)
. When setting the Boot Loader Lock bits, the R1:R0 register pair is used as
data. Refer to the device documentation for detailed description of SPM usage. This instruction can
address the entire Program memory.
The SPM instruction is not available in all devices. Refer to the device specific instruction set summary.
Note:  1. R1 determines the instruction high byte, and R0 determines the instruction low byte.
Operation:
(i) (RAMPZ:Z) ← $ffff Erase Program memory page
(ii) (RAMPZ:Z) ← R1:R0 Write Program memory word
(iii) (RAMPZ:Z) ← R1:R0 Write temporary page buffer
(iv) (RAMPZ:Z) ← TEMP Write temporary page buffer to Program
memory
(v) BLBITS ← R1:R0 Set Boot Loader Lock bits
Syntax: Operands: Program Counter:
(i)-(v) SPM Z+ PC ← PC + 1
16-bit Opcode:
1001 0101 1110 1000
116.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
;This example shows SPM write of one page for devices with page write
;- the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y-pointer
; the first data location in Flash is pointed to by the Z-pointer
;- error handling is not included
;- the routine must be placed inside the boot space
; (at least the do_spm sub routine)
;- registers used: r0, r1, temp1, temp2, looplo, loophi, spmcrval
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
169
; (temp1, temp2, looplo, loophi, spmcrval must be defined by the user)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words
.org SMALLBOOTSTART
write_page:
;page erase
ldi spmcrval, (1<<PGERS) + (1<<SPMEN)
call do_spm
;transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
wrloop: ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne wrloop
;execute page write
subi ZL, low(PAGESIZEB);restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) + (1<<SPMEN)
call do_spm
;read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)
rdloop: lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp error
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne rdloop
;return
ret
do_spm:
;input: spmcrval determines SPM action
;disable interrupts if enabled, store status
in temp2, SREG
cli
;check for previous SPM complete
wait: in temp1, SPMCR
sbrc temp1, SPMEN
rjmp wait
;SPM timed sequence
out SPMCR, spmcrval
spm
;restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
Words 1 (2 bytes)
Cycles Depends on the operation
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
170
117. SPM #2 – Store Program Memory
117.1. Description
SPM can be used to erase a page in the Program memory and to write a page in the Program memory
(that is already erased). An entire page can be programmed simultaneously after first filling a temporary
page buffer. The Program memory must be erased one page at a time. When erasing the Program
memory, the RAMPZ and Z-register are used as page address. When writing the Program memory, the
RAMPZ and Z-register are used as page or word address, and the R1:R0 register pair is used as data
(1)
.
Refer to the device documentation for detailed description of SPM usage. This instruction can address
the entire Program memory.
Note:  1. R1 determines the instruction high byte, and R0 determines the instruction low byte.
Operation:
(i) (RAMPZ:Z) ← $ffff Erase Program memory page
(ii) (RAMPZ:Z) ← R1:R0 Load Page Buffer
(iii) (RAMPZ:Z) ←
BUFFER
Write Page Buffer to Program memory
(iv) (RAMPZ:Z) ← $fff, Z
← Z + 2
Erase Program memory page, Z post
incremented
(v) BLBITS ← R1:R0, Z
← Z + 2
Load Page Buffer, Z post incremented
(vi) (RAMPZ:Z)
←BUFFER, Z ← Z +
2
Write Page Buffer to Program memory, Z
post incremented
Syntax: Operands: Program Counter:
(i)-(iii) SPM None PC ← PC + 1
(iv)-(vi) SPM Z+ None PC ← PC + 1
16-bit Opcode:
(i)-(iii) 1001 0101 1110 1000
(iv)-(vi) 1001 0101 1111 1000
117.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Words 1 (2 bytes)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
171
Cycles Depends on the operation
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
172
118. ST – Store Indirect From Register to Data Space using Index X
118.1. Description
Stores one byte indirect from a register to data space. For parts with SRAM, the data space consists of
the Register File, I/O memory, and internal SRAM (and external SRAM if applicable). For parts without
SRAM, the data space consists of the Register File only. The EEPROM has a separate address space.
The data location is pointed to by the X (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64KB. To access another data segment in devices with more than
64KB data space, the RAMPX in register in the I/O area has to be changed.
The X-pointer Register can either be left unchanged by the operation, or it can be post-incremented or
pre-decremented. These features are especially suited for accessing arrays, tables, and Stack Pointer
usage of the X-pointer Register. Note that only the low byte of the X-pointer is updated in devices with no
more than 256 bytes data space. For such devices, the high byte of the pointer is not used by this
instruction and can be used for other purposes. The RAMPX Register in the I/O area is updated in parts
with more than 64KB data space or more than 64KB Program memory, and the increment/ decrement is
added to the entire 24-bit address on such devices.
Not all variants of this instruction is available in all devices. Refer to the device specific instruction set
summary.
The result of these combinations is undefined:
ST X+, r26
ST X+, r27
ST -X, r26
ST -X, r27
Using the X-pointer:
Operation: Comment:
(i) (X) ← Rr X: Unchanged
(ii) (X) ← Rr, X ← X+1 X: Post incremented
(iii) X ← X - 1, (X) ← Rr X: Pre decremented
Syntax: Operands: Program Counter:
(i) ST X, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(ii) ST X+, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iii) ST -X, Rr 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
173
(i) 1001 001r rrrr 1100
(ii) 1001 001r rrrr 1101
(iii) 1001 001r rrrr 1110
118.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
clr r27 ; Clear X high byte
ldi r26,$60 ; Set X low byte to $60
st X+,r0 ; Store r0 in data space loc. $60(X post inc)
st X,r1 ; Store r1 in data space loc. $61
ldi r26,$63 ; Set X low byte to $63
st X,r2 ; Store r2 in data space loc. $63
st -X,r3 ; Store r3 in data space loc. $62(X pre dec)
Words 1 (2 bytes)
Cycles 2
Cycles XMEGA (i) 1
(ii) 1
(iii) 2
Cycles Reduced Core tinyAVR (i) 1
(ii) 1
(iii) 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
174
119. ST (STD) – Store Indirect From Register to Data Space using Index Y
119.1. Description
Stores one byte indirect with or without displacement from a register to data space. For parts with SRAM,
the data space consists of the Register File, I/O memory, and internal SRAM (and external SRAM if
applicable). For parts without SRAM, the data space consists of the Register File only. The EEPROM has
a separate address space.
The data location is pointed to by the Y (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64KB. To access another data segment in devices with more than
64KB data space, the RAMPY in register in the I/O area has to be changed.
The Y-pointer Register can either be left unchanged by the operation, or it can be post-incremented or
pre-decremented. These features are especially suited for accessing arrays, tables, and Stack Pointer
usage of the Y-pointer Register. Note that only the low byte of the Y-pointer is updated in devices with no
more than 256 bytes data space. For such devices, the high byte of the pointer is not used by this
instruction and can be used for other purposes. The RAMPY Register in the I/O area is updated in parts
with more than 64KB data space or more than 64KB Program memory, and the increment/ decrement/
displacement is added to the entire 24-bit address on such devices.
Not all variants of this instruction is available in all devices. Refer to the device specific instruction set
summary.
The result of these combinations is undefined:
ST Y+, r28
ST Y+, r29
ST -Y, r28
ST -Y, r29
Using the Y-pointer:
Operation: Comment:
(i) (Y) ← Rr Y: Unchanged
(ii) (Y) ← Rr, Y ← Y+1 Y: Post incremented
(iii) Y ← Y - 1, (Y) ← Rr Y: Pre decremented
(iv) (Y+q) ← Rr Y: Unchanged, q:
Displacement
Syntax: Operands: Program Counter:
(i) ST Y, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(ii) ST Y+, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iii) ST -Y, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iv) STD Y+q, Rr 0 ≤ r ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
175
16-bit Opcode:
(i) 1000 001r rrrr 1000
(ii) 1001 001r rrrr 1001
(iii) 1001 001r rrrr 1010
(iv) 10q0 qq1r rrrr 1qqq
119.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
clr r29 ; Clear Y high byte
ldi r28,$60 ; Set Y low byte to $60
st Y+,r0 ; Store r0 in data space loc. $60(Y post inc)
st Y,r1 ; Store r1 in data space loc. $61
ldi r28,$63 ; Set Y low byte to $63
st Y,r2 ; Store r2 in data space loc. $63
st -Y,r3 ; Store r3 in data space loc. $62(Y pre dec)
std Y+2,r4 ; Store r4 in data space loc. $64
Words 1 (2 bytes)
Cycles 2
Cycles XMEGA (i) 1
(ii) 1
(iii) 2
(iv) 2
Cycles Reduced Core tinyAVR (i) 1
(ii) 1
(iii) 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
176
120. ST (STD) – Store Indirect From Register to Data Space using Index Z
120.1. Description
Stores one byte indirect with or without displacement from a register to data space. For parts with SRAM,
the data space consists of the Register File, I/O memory, and internal SRAM (and external SRAM if
applicable). For parts without SRAM, the data space consists of the Register File only. The EEPROM has
a separate address space.
The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64KB. To access another data segment in devices with more than
64KB data space, the RAMPZ in register in the I/O area has to be changed.
The Z-pointer Register can either be left unchanged by the operation, or it can be post-incremented or
pre-decremented. These features are especially suited for Stack Pointer usage of the Z-pointer Register,
however because the Z-pointer Register can be used for indirect subroutine calls, indirect jumps and
table look-up, it is often more convenient to use the X- or Y-pointer as a dedicated Stack Pointer. Note
that only the low byte of the Z-pointer is updated in devices with no more than 256 bytes data space. For
such devices, the high byte of the pointer is not used by this instruction and can be used for other
purposes. The RAMPZ Register in the I/O area is updated in parts with more than 64KB data space or
more than 64KB Program memory, and the increment/decrement/displacement is added to the entire 24-
bit address on such devices.
Not all variants of this instruction is available in all devices. Refer to the device specific instruction set
summary.
The result of these combinations is undefined:
ST Z+, r30
ST Z+, r31
ST -Z, r30
ST -Z, r31
Using the Z-pointer:
Operation: Comment:
(i) (Z) ←Rr Z: Unchanged
(ii) (Z) ← Rr, Z ← Z+1 Z: Post incremented
(iii) Z ← Z - 1, (Z) ← Rr Z: Pre decremented
(iv) (Z+q) ← Rr Z: Unchanged, q:
Displacement
Syntax: Operands: Program Counter:
(i) ST Z, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(ii) ST Z+, Rr 0 ≤ r ≤ 31 PC ← PC + 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
177
(iii) ST -Z, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iv) STD Z+q, Rr 0 ≤ r ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1
16-bit Opcode :
(i) 1000 001r rrrr 0000
(ii) 1001 001r rrrr 0001
(iii) 1001 001r rrrr 0010
(iv) 10q0 qq1r rrrr 0qqq
120.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
clr r31 ; Clear Z high byte
ldi r30,$60 ; Set Z low byte to $60
st Z+,r0 ; Store r0 in data space loc. $60(Z post inc)
st Z,r1 ; Store r1 in data space loc. $61
ldi r30,$63 ; Set Z low byte to $63
st Z,r2 ; Store r2 in data space loc. $63
st -Z,r3 ; Store r3 in data space loc. $62(Z pre dec)
std Z+2,r4 ; Store r4 in data space loc. $64
Words 1 (2 bytes)
Cycles 2
Cycles XMEGA (i) 1
(ii) 1
(iii) 2
(iv) 2
Cycles Reduced Core tinyAVR (i) 1
(ii) 1
(iii) 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
178
121. STS – Store Direct to Data Space
121.1. Description
Stores one byte from a Register to the data space. For parts with SRAM, the data space consists of the
Register File, I/O memory, and internal SRAM (and external SRAM if applicable). For parts without
SRAM, the data space consists of the Register File only. The EEPROM has a separate address space.
A 16-bit address must be supplied. Memory access is limited to the current data segment of 64KB. The
STS instruction uses the RAMPD Register to access memory above 64KB. To access another data
segment in devices with more than 64KB data space, the RAMPD in register in the I/O area has to be
changed.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) (k) ← Rr
Syntax: Operands: Program Counter:
(i) STS k,Rr 0 ≤ r ≤ 31, 0 ≤ k ≤ 65535 PC ← PC + 2
32-bit Opcode:
1001 001d dddd 0000
kkkk kkkk kkkk kkkk
121.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
lds r2,$FF00 ; Load r2 with the contents of data space location $FF00
add r2,r1 ; add r1 to r2
sts $FF00,r2 ; Write back
Words 2 (4 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
179
122. STS (16-bit) – Store Direct to Data Space
122.1. Description
Stores one byte from a Register to the data space. For parts with SRAM, the data space consists of the
Register File, I/O memory, and internal SRAM (and external SRAM if applicable). For parts without
SRAM, the data space consists of the Register File only. In some parts the Flash memory has been
mapped to the data space and can be written using this command. The EEPROM has a separate
address space.
A 7-bit address must be supplied. The address given in the instruction is coded to a data space address
as follows:
ADDR[7:0] = (INST[8], INST[8], INST[10], INST[9], INST[3], INST[2], INST[1], INST[0])
Memory access is limited to the address range 0x40...0xbf of the data segment.
This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:
(i) (k) ← Rr
Syntax: Operands: Program Counter:
(i) STS k,Rr 16 ≤ r ≤ 31, 0 ≤ k ≤ 127 PC ← PC + 1
16-bit Opcode:
1010 1kkk dddd kkkk
122.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
lds r16,$00 ; Load r16 with the contents of data space location $00
add r16,r17 ; add r17 to r16
sts $00,r16 ; Write result to the same address it was fetched from
Words 1 (2 bytes)
Cycles 1
Note:  Registers r0...r15 are remapped to r16...r31
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
180
123. SUB – Subtract Without Carry
123.1. Description
Subtracts two registers and places the result in the destination register Rd.
Operation:
(i) Rd ← Rd - Rr
Syntax: Operands: Program Counter:
(i) SUB Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1
16-bit Opcode:
0001 10rd dddd rrrr
123.2. Status Register and Boolean Formula
I T H S V N Z C
H Rd3 • Rr3 + Rr3 • R3 + R3 • Rd3
Set if there was a borrow from bit 3; cleared otherwise.
S N V, for signed tests.
V Rd7 • Rr7 • R7 + Rd7 • Rr7 • R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd7 • Rr7 + Rr7 • R7 + R7 • Rd7
Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared
otherwise.
R (Result) equals Rd after the operation.
Example:
sub r13,r12 ; Subtract r12 from r13
brne noteq ; Branch if r12<>r13
...
noteq: nop ; Branch destination (do nothing)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
181
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
182
124. SUBI – Subtract Immediate
124.1. Description
Subtracts a register and a constant, and places the result in the destination register Rd. This instruction is
working on Register R16 to R31 and is very well suited for operations on the X, Y, and Z-pointers.
Operation:
(i) Rd ← Rd - K
Syntax: Operands: Program Counter:
(i) SUBI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1
16-bit Opcode:
0101 KKKK dddd KKKK
124.2. Status Register and Boolean Formula
I T H S V N Z C
H Rd3 • K3 + K3 • R3 + R3 • Rd3
Set if there was a borrow from bit 3; cleared otherwise.
S N V, for signed tests.
V Rd7 • K7 • R7 + Rd7 • K7 • R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
C Rd7 • K7 + K7 • R7 + R7 • Rd7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.
R (Result) equals Rd after the operation.
Example:
subi r22,$11 ; Subtract $11 from r22
brne noteq ; Branch if r22<>$11
...
noteq: nop ; Branch destination (do nothing)
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
183
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
184
125. SWAP – Swap Nibbles
125.1. Description
Swaps high and low nibbles in a register.
Operation:
(i) R(7:4) ← Rd(3:0), R(3:0) ← Rd(7:4)
Syntax: Operands: Program Counter:
(i) SWAP Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 010d dddd 0010
125.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
R (Result) equals Rd after the operation.
Example:
inc r1 ; Increment r1
swap r1 ; Swap high and low nibble of r1
inc r1 ; Increment high nibble of r1
swap r1 ; Swap back
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
185
126. TST – Test for Zero or Minus
126.1. Description
Tests if a register is zero or negative. Performs a logical AND between a register and itself. The register
will remain unchanged.
Operation:
(i) Rd ← Rd • Rd
Syntax: Operands: Program Counter:
(i) TST Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode: (see AND Rd, Rd)
0010 00dd dddd dddd
126.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
0
S N V, for signed tests.
V 0
Cleared.
N R7
Set if MSB of the result is set; cleared otherwise.
Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if the result is $00; cleared otherwise.
R (Result) equals Rd.
Example:
tst r0 ; Test r0
breq zero ; Branch if r0=0
...
zero: nop ; Branch destination (do nothing)
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
186
127. WDR – Watchdog Reset
127.1. Description
This instruction resets the Watchdog Timer. This instruction must be executed within a limited time given
by the WD prescaler. See the Watchdog Timer hardware specification.
Operation:
(i) WD timer restart.
Syntax: Operands: Program Counter:
(i) WDR None PC ← PC + 1
16-bit Opcode:
1001 0101 1010 1000
127.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Example:
wdr ; Reset watchdog timer
Words 1 (2 bytes)
Cycles 1
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
187
128. XCH – Exchange
128.1. Description
Exchanges one byte indirect between register and data space.
The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64KB. To access another data segment in devices with more than
64KB data space, the RAMPZ in register in the I/O area has to be changed.
The Z-pointer Register is left unchanged by the operation. This instruction is especially suited for writing/
reading status bits stored in SRAM.
Operation:
(i) (Z) ← Rd, Rd ← (Z)
Syntax: Operands: Program Counter:
(i) XCH Z,Rd 0 ≤ d ≤ 31 PC ← PC + 1
16-bit Opcode:
1001 001r rrrr 0100
128.2. Status Register (SREG) and Boolean Formula
I T H S V N Z C
Words 1 (2 bytes)
Cycles 2
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
188
129. Datasheet Revision History
Note that the referring page numbers in this section are referred to this document. The referring revision
in this section is referred to the document revision.
129.1. Rev.0856L - 11/2016
A complete review of the document.
New document template.
129.2. Rev.0856K - 04/2016
A note has been added to section “RETI – Return from Interrupt”.
129.3. Rev.0856J - 07/2014
Section “Conditional Branch Summary” has been corrected.
2. The first table in section “Description" has been corrected.
3. “TBD” in “Example” in section "Description”" has been removed.
4. The LAC operation in section "LAC – Load and Clear" has been corrected.
5. New template has been added.
129.4. Rev.0856I – 07/2010
1. Updated section "Instruction Set Summary" with new instructions: LAC, LAS, LAT, and XCH.
Section "LAC - Load and Clear"
Section "LAS – Load and Set"
Section "LAT – Load and Toggle"
Section "XCH – Exchange"
2. Updated number of clock cycles column to include Reduced Core tinyAVR.
(ATtiny replaced by Reduced Core tinyAVR).
129.5. Rev.0856H – 04/2009
1. Updated section "Instruction Set Summary":
Updated number of clock cycles column to include Reduced Core tinyAVR.
2. Updated sections for Reduced Core tinyAVR compatibility:
Section "CBI – Clear Bit in I/O Register"
Section "LD – Load Indirect from Data Space to Register using Index X"
Section "LD (LDD) – Load Indirect from Data Space to Register using Index Y"
Section "LD (LDD) – Load Indirect From Data Space to Register using Index Z"
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
189
Section "RCALL – Relative Call to Subroutine"
Section "SBI – Set Bit in I/O Register"
Section "ST – Store Indirect From Register to Data Space using Index X"
Section "ST (STD) – Store Indirect From Register to Data Space using Index Y"
Section "ST (STD) – Store Indirect From Register to Data Space using Index Z"
3. Added sections for Reduced Core tinyAVR compatibility:
Section "LDS (16-bit) – Load Direct from Data Space"
Section "STS (16-bit) – Store Direct to Data Space"
129.6. Rev.0856G – 07/2008
1. Inserted “Datasheet Revision History”.
2. Updated “Cycles XMEGA” for ST, by removing (iv).
3. Updated “SPM #2” opcodes.
129.7. Rev.0856F – 05/2008
1. This revision is based on the AVR Instruction Set 0856E-AVR-11/05.
Changes done compared to AVR Instruction Set 0856E-AVR-11/05:
Updated “Complete Instruction Set Summary” with DES and SPM #2.
Updated AVR Instruction Set with XMEGA Clock cycles and Instruction Description.
Atmel AVR Instruction Set Manual [OTHER]
Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
190
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com
©
2016 Atmel Corporation. / Rev.: Atmel-0856L-AVR-Instruction-Set-Manual_Other-11/2016
Atmel
®
, Atmel logo and combinations thereof, Enabling Unlimited Possibilities
®
, AVR
®
, megaAVR
®
, tinyAVR
®
, XMEGA
®
, and others are registered trademarks or
trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.